Department of Calcified Tissue Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Minami-ku, Hiroshima 734-8553, Japan.
Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Minami-ku, Hiroshima 734-8553, Japan.
Int J Mol Sci. 2021 Jun 23;22(13):6745. doi: 10.3390/ijms22136745.
We recently reported an unexpected role of osteoblast-derived matrix vesicles in the delivery of microRNAs to bone matrix. Of such microRNAs, we found that miR-125b inhibited osteoclast formation by targeting encoding a transcriptional repressor of anti-osteoclastogenesis factors. Transgenic (Tg) mice overexpressing miR-125b in osteoblasts by using human osteocalcin promoter grow normally but exhibit high trabecular bone mass. We have now further investigated the effects of osteoblast-mediated miR-125b overexpression on skeletal morphogenesis and remodeling during development, aging and in a situation of skeletal repair, i.e., fracture healing. There were no significant differences in the growth plate, primary spongiosa or lateral (periosteal) bone formation and mineral apposition rate between Tg and wild-type (WT) mice during early bone development. However, osteoclast number and medial (endosteal) bone resorption were less in Tg compared to WT mice, concomitant with increased trabecular bone mass. Tg mice were less susceptible to age-dependent changes in bone mass, phosphate/amide I ratio and mechanical strength. In a femoral fracture model, callus formation progressed similarly in Tg and WT mice, but callus resorption was delayed, reflecting the decreased osteoclast numbers associated with the Tg callus. These results indicate that the decreased osteoclastogenesis mediated by miR-125b overexpression in osteoblasts leads to increased bone mass and strength, while preserving bone formation and quality. They also suggest that, in spite of the fact that single miRNAs may target multiple genes, the miR-125b axis may be an attractive therapeutic target for bone loss in various age groups.
我们最近报道了成骨细胞来源的基质小泡在将 microRNAs 递送至骨基质中的意外作用。在这些 microRNAs 中,我们发现 miR-125b 通过靶向编码抗破骨细胞形成因子的转录抑制剂,抑制破骨细胞形成。通过使用人骨钙素启动子在成骨细胞中过表达 miR-125b 的转基因 (Tg) 小鼠正常生长,但表现出高小梁骨量。我们现在进一步研究了成骨细胞介导的 miR-125b 过表达对骨骼形态发生和发育、衰老和骨骼修复(即骨折愈合)期间重塑的影响。在早期骨骼发育过程中,Tg 和野生型 (WT) 小鼠之间的生长板、初级松质骨或外侧(骨膜)骨形成和矿化附着率没有显著差异。然而,与 WT 小鼠相比,Tg 小鼠中的破骨细胞数量和内侧(骨内膜)骨吸收较少,同时小梁骨量增加。Tg 小鼠对骨量、磷酸盐/酰胺 I 比和机械强度随年龄变化的易感性降低。在股骨骨折模型中,Tg 和 WT 小鼠的骨痂形成进展相似,但骨痂吸收延迟,反映了与 Tg 骨痂相关的破骨细胞数量减少。这些结果表明,成骨细胞中 miR-125b 过表达介导的破骨细胞形成减少导致骨量和强度增加,同时保持骨形成和质量。它们还表明,尽管单个 miRNAs 可能靶向多个基因,但 miR-125b 轴可能是治疗各种年龄段骨丢失的有吸引力的治疗靶点。