Maldonado Edio, Rojas Diego A, Urbina Fabiola, Solari Aldo
Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile.
Instituto de Ciencias Biomédicas (ICB), Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8380453, Chile.
Antioxidants (Basel). 2021 Jun 25;10(7):1022. doi: 10.3390/antiox10071022.
Chagas disease is a neglected tropical disease caused by the flagellated protozoa . This illness affects to almost 8-12 million people worldwide, however, is endemic to Latin American countries. It is mainly vectorially transmitted by insects of the Triatominae family, although other transmission routes also exist. -infected cardiomyocytes at the chronic stage of the disease display severe mitochondrial dysfunction and high ROS production, leading to chronic myocardial inflammation and heart failure. Under cellular stress, cells usually can launch mitochondrial biogenesis in order to restore energy loss. Key players to begin mitochondrial biogenesis are the PGC-1 (PPARγ coactivator 1) family of transcriptional coactivators, which are activated in response to several stimuli, either by deacetylation or dephosphorylation, and in turn can serve as coactivators for the NRF (nuclear respiratory factor) family of transcription factors. The NRF family of transcriptional activators, namely NRF1 and NRF2, can activate gene expression of oxidative phosphorylation (OXPHOS) components, mitochondrial transcriptional factor (Tfam) and nuclear encoded mitochondrial proteins, leading to mitochondrial biogenesis. On the other hand, NRF2 can activate gene expression of antioxidant enzymes in response to antioxidants, oxidants, electrophile compounds, pharmaceutical and dietary compounds in a mechanism dependent on KEAP1 (Kelch-like ECH-associated protein 1). Since a definitive cure to treat Chagas disease has not been found yet; the use of antioxidants a co-adjuvant therapy has been proposed in an effort to improve mitochondrial functions, biogenesis, and the antioxidant defenses response. Those antioxidants could activate different pathways to begin mitochondrial biogenesis and/or cytoprotective antioxidant defenses. In this review we discuss the main mechanisms of mitochondrial biogenesis and the NRF2-KEAP1 activation pathway. We also reviewed the antioxidants used as co-adjuvant therapy to treat experimental Chagas disease and their action mechanisms and finish with the discussion of antioxidant therapy used in Chagas disease patients.
恰加斯病是一种由有鞭毛的原生动物引起的被忽视的热带病。这种疾病影响着全球近800万至1200万人,然而,它在拉丁美洲国家流行。它主要通过锥蝽亚科昆虫进行媒介传播,不过也存在其他传播途径。疾病慢性期被感染的心肌细胞表现出严重的线粒体功能障碍和高活性氧生成,导致慢性心肌炎症和心力衰竭。在细胞应激状态下,细胞通常会启动线粒体生物合成以恢复能量损失。启动线粒体生物合成的关键因子是转录共激活因子PGC-1(过氧化物酶体增殖物激活受体γ共激活因子1)家族,它们在受到多种刺激时通过去乙酰化或去磷酸化被激活,进而可作为转录因子NRF(核呼吸因子)家族的共激活因子。转录激活因子NRF家族,即NRF1和NRF2,可激活氧化磷酸化(OXPHOS)成分、线粒体转录因子(Tfam)和核编码线粒体蛋白的基因表达,从而导致线粒体生物合成。另一方面,NRF2可通过一种依赖于KEAP1( Kelch样ECH相关蛋白1)的机制,响应抗氧化剂、氧化剂、亲电化合物、药物和膳食化合物激活抗氧化酶的基因表达。由于尚未找到治疗恰加斯病的根治方法,因此有人提出使用抗氧化剂作为辅助治疗,以改善线粒体功能、生物合成以及抗氧化防御反应。这些抗氧化剂可激活不同途径来启动线粒体生物合成和/或细胞保护性抗氧化防御。在本综述中,我们讨论了线粒体生物合成的主要机制以及NRF2-KEAP1激活途径。我们还回顾了用作治疗实验性恰加斯病辅助治疗的抗氧化剂及其作用机制,并最后讨论了恰加斯病患者使用的抗氧化治疗。