文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

病毒基因组中的信息区域。

Informative Regions In Viral Genomes.

机构信息

Department of Microbiome Science, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany.

Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de los Andes, Bogotá 111711, Colombia.

出版信息

Viruses. 2021 Jun 18;13(6):1164. doi: 10.3390/v13061164.


DOI:10.3390/v13061164
PMID:34207030
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8234400/
Abstract

Viruses, far from being just parasites affecting hosts' fitness, are major players in any microbial ecosystem. In spite of their broad abundance, viruses, in particular bacteriophages, remain largely unknown since only about 20% of sequences obtained from viral community DNA surveys could be annotated by comparison with public databases. In order to shed some light into this genetic dark matter we expanded the search of orthologous groups as potential markers to viral taxonomy from bacteriophages and included eukaryotic viruses, establishing a set of 31,150 ViPhOGs (Eukaryotic Viruses and Phages Orthologous Groups). To do this, we examine the non-redundant viral diversity stored in public databases, predict proteins in genomes lacking such information, and used all annotated and predicted proteins to identify potential protein domains. The clustering of domains and unannotated regions into orthologous groups was done using cogSoft. Finally, we employed a random forest implementation to classify genomes into their taxonomy and found that the presence or absence of ViPhOGs is significantly associated with their taxonomy. Furthermore, we established a set of 1457 ViPhOGs that given their importance for the classification could be considered as markers or signatures for the different taxonomic groups defined by the ICTV at the order, family, and genus levels.

摘要

病毒远非仅仅是影响宿主适应性的寄生虫,它们还是任何微生物生态系统中的主要参与者。尽管病毒(特别是噬菌体)广泛存在,但由于从病毒群落 DNA 调查中获得的序列中只有约 20%可以通过与公共数据库的比较进行注释,因此它们在很大程度上仍然不为人知。为了阐明这一遗传暗物质,我们将搜索与细菌噬菌体的病毒分类学相关的同源群作为潜在标记进行了扩展,并纳入了真核病毒,建立了一套包含 31150 个 ViPhOGs(真核病毒和噬菌体同源群)的集合。为此,我们检查了公共数据库中存储的非冗余病毒多样性,预测了缺乏此类信息的基因组中的蛋白质,并使用所有注释和预测的蛋白质来识别潜在的蛋白质结构域。使用 cogSoft 将结构域和未注释区域聚类为同源群。最后,我们采用随机森林实现对基因组进行分类,并发现 ViPhOGs 的存在与否与它们的分类学显著相关。此外,我们建立了一套包含 1457 个 ViPhOGs 的集合,这些 ViPhOGs 因其对分类的重要性,可被视为 ICTV 在目、科和属级别定义的不同分类群的标记或特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aa5/8234400/ecc4057f211b/viruses-13-01164-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aa5/8234400/84eb3e86e93f/viruses-13-01164-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aa5/8234400/9f410b9a1038/viruses-13-01164-g002a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aa5/8234400/6687e756b4c5/viruses-13-01164-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aa5/8234400/a780af0130a3/viruses-13-01164-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aa5/8234400/ecc4057f211b/viruses-13-01164-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aa5/8234400/84eb3e86e93f/viruses-13-01164-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aa5/8234400/9f410b9a1038/viruses-13-01164-g002a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aa5/8234400/6687e756b4c5/viruses-13-01164-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aa5/8234400/a780af0130a3/viruses-13-01164-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aa5/8234400/ecc4057f211b/viruses-13-01164-g005.jpg

相似文献

[1]
Informative Regions In Viral Genomes.

Viruses. 2021-6-18

[2]
The genomic underpinnings of eukaryotic virus taxonomy: creating a sequence-based framework for family-level virus classification.

Microbiome. 2018-2-20

[3]
Evaluation of the genomic diversity of viruses infecting bacteria, archaea and eukaryotes using a common bioinformatic platform: steps towards a unified taxonomy.

J Gen Virol. 2018-7-17

[4]
Orthologous gene clusters and taxon signature genes for viruses of prokaryotes.

J Bacteriol. 2012-12-7

[5]
Virus classification - where do you draw the line?

Arch Virol. 2018-8

[6]
Eukaryotic large nucleo-cytoplasmic DNA viruses: clusters of orthologous genes and reconstruction of viral genome evolution.

Virol J. 2009-12-17

[7]
Evolution of double-stranded DNA viruses of eukaryotes: from bacteriophages to transposons to giant viruses.

Ann N Y Acad Sci. 2015-4

[8]
Genomes of the T4-related bacteriophages as windows on microbial genome evolution.

Virol J. 2010-10-28

[9]
Solving the species problem in viral taxonomy: recommendations on non-Latinized binomial species names and on abandoning attempts to assign metagenomic viral sequences to species taxa.

Arch Virol. 2019-6-18

[10]
Bacteriophages of spp. Display a Spectrum of Diversity and Genetic Relationships.

mBio. 2017-8-15

引用本文的文献

[1]
Long-term health outcomes in adolescents with obesity treated with faecal microbiota transplantation: 4-year follow-up.

Nat Commun. 2025-8-28

[2]
Phage-mediated horizontal transfer of virulence genes with regulatory feedback from the host.

Imeta. 2025-5-20

[3]
First detection of a lizard-associated papillomavirus in the splendid japalure () from southwestern China.

Front Microbiol. 2025-7-28

[4]
Fine-Tuning Protein Language Models Unlocks the Potential of Underrepresented Viral Proteomes.

bioRxiv. 2025-6-11

[5]
Soil viral-host interactions regulate microplastic-dependent carbon storage.

Proc Natl Acad Sci U S A. 2024-11-5

[6]
Viromes vs. mixed community metagenomes: choice of method dictates interpretation of viral community ecology.

Microbiome. 2024-10-7

[7]
Fecal microbiota transplantation alters gut phage communities in a clinical trial for obesity.

Microbiome. 2024-7-6

[8]
Large-scale genomic survey with deep learning-based method reveals strain-level phage specificity determinants.

Gigascience. 2024-1-2

[9]
Viromes vs. mixed community metagenomes: choice of method dictates interpretation of viral community ecology.

bioRxiv. 2023-12-12

[10]
VIRify: An integrated detection, annotation and taxonomic classification pipeline using virus-specific protein profile hidden Markov models.

PLoS Comput Biol. 2023-8

本文引用的文献

[1]
The new scope of virus taxonomy: partitioning the virosphere into 15 hierarchical ranks.

Nat Microbiol. 2020-4-27

[2]
Defining a Core Genome for the Herpesvirales and Exploring their Evolutionary Relationship with the Caudovirales.

Sci Rep. 2019-8-5

[3]
Multiple evolutionary origins of giant viruses.

F1000Res. 2018-11-22

[4]
Origins and Evolution of the Global RNA Virome.

mBio. 2018-11-27

[5]
ICTV Virus Taxonomy Profile: Pneumoviridae.

J Gen Virol. 2017-12

[6]
Prokaryotic Virus Orthologous Groups (pVOGs): a resource for comparative genomics and protein family annotation.

Nucleic Acids Res. 2017-1-4

[7]
The Double-Stranded DNA Virosphere as a Modular Hierarchical Network of Gene Sharing.

mBio. 2016-8-2

[8]
Taxonomy of the order Mononegavirales: update 2016.

Arch Virol. 2016-8

[9]
Computational prospecting the great viral unknown.

FEMS Microbiol Lett. 2016-5

[10]
MG-RAST, a Metagenomics Service for Analysis of Microbial Community Structure and Function.

Methods Mol Biol. 2016

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索