Suppr超能文献

冠状动脉钙化及狭窄预测:低剂量 CT 放射组学的作用。

Prediction of Coronary Calcification and Stenosis: Role of Radiomics From Low-Dose CT.

机构信息

Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 75 Blossom Court, Room 248, Boston, MA 02114.

Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Tory, New York.

出版信息

Acad Radiol. 2021 Jul;28(7):972-979. doi: 10.1016/j.acra.2020.09.021.

Abstract

RATIONALE AND OBJECTIVES

We aimed to assess relationship between single-click, whole heart radiomics from low-dose computed tomography (LDCT) for lung cancer screening with coronary artery calcification and stenosis.

MATERIALS AND METHODS

The institutional review board-approved, retrospective study included all 106 patients (68 men, 38 women, mean age 64 ± 7 years) who underwent both LDCT for lung cancer screening and had calcium scoring and coronary computed tomography angiography in our institution. We recorded the clinical variables including patients' demographics, smoking history, family history, and lipid profiles. Coronary calcium scores and grading of coronary stenosis were recorded from the radiology information system. We calculated the multiethnic scores for atherosclerosis risk scores to obtain 10-year coronary heart disease (MESA 10-Y CHD) risk of cardiovascular disease for all patients. Deidentified LDCT exams were exported to a Radiomics prototype for automatic heart segmentation, and derivation of radiomics. Data were analyzed using multiple logistic regression and kernel Fisher discriminant analyses.

RESULTS

Whole heart radiomics were better than the clinical variables for differentiating subjects with different Agatston scores (≤400 and >400) (area under the curve [AUC] 0.92 vs 0.69). Prediction of coronary stenosis and MESA 10-Y CHD risk was better on whole heart radiomics (AUC:0.86-0.87) than with clinical variables (AUC:0.69-0.79). Addition of clinical variables or visual assessment of coronary calcification from LDCT to whole heart radiomics resulted in a modest change in the AUC.

CONCLUSION

Single-click, whole heart radiomics obtained from LDCT for lung cancer screening can differentiate patients with different Agatston and MESA risk scores for cardiovascular diseases.

摘要

背景与目的

本研究旨在评估单次点击、全心脏放射组学与冠状动脉钙化和狭窄之间的关系,该放射组学源自用于肺癌筛查的低剂量计算机断层扫描(LDCT)。

材料与方法

本回顾性研究经机构审查委员会批准,共纳入在我院同时接受 LDCT 肺癌筛查、且行钙评分和冠状动脉 CT 血管造影的 106 例患者(男 68 例,女 38 例,平均年龄 64±7 岁)。记录了包括患者人口统计学特征、吸烟史、家族史和血脂谱在内的临床变量。从放射信息系统中记录冠状动脉钙评分和冠状动脉狭窄分级。我们计算了动脉粥样硬化多民族评分以获得所有患者的 10 年冠心病(MESA 10-Y CHD)心血管疾病风险。对去识别 LDCT 检查进行导出到放射组学原型,以进行自动心脏分割和放射组学的推导。使用多元逻辑回归和核Fisher 判别分析对数据进行分析。

结果

全心脏放射组学在区分不同 Agatston 评分(≤400 和>400)的患者方面优于临床变量(曲线下面积[AUC]:0.92 与 0.69)。全心脏放射组学对冠状动脉狭窄和 MESA 10-Y CHD 风险的预测优于临床变量(AUC:0.86-0.87 与 0.69-0.79)。将临床变量或 LDCT 冠状动脉钙化的视觉评估添加到全心脏放射组学中,AUC 略有变化。

结论

单次点击、源自 LDCT 肺癌筛查的全心脏放射组学可以区分不同 Agatston 和 MESA 心血管疾病风险评分的患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c9/8262050/e78084e33f5f/nihms-1648832-f0001.jpg

相似文献

引用本文的文献

本文引用的文献

4
Knowledge-Based Analysis for Mortality Prediction From CT Images.基于知识的 CT 图像死亡率预测分析。
IEEE J Biomed Health Inform. 2020 Feb;24(2):457-464. doi: 10.1109/JBHI.2019.2946066. Epub 2019 Oct 7.
9
Coronary artery calcification in lung cancer screening.肺癌筛查中的冠状动脉钙化
Transl Lung Cancer Res. 2018 Jun;7(3):361-367. doi: 10.21037/tlcr.2018.05.05.
10
Coronary Calcium Score and Cardiovascular Risk.冠状动脉钙评分与心血管风险。
J Am Coll Cardiol. 2018 Jul 24;72(4):434-447. doi: 10.1016/j.jacc.2018.05.027.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验