Suppr超能文献

用于癌症治疗评估的原发性肿瘤标本分析

Analysis of Primary Tumor Specimens for Evaluation of Cancer Therapeutics.

作者信息

Tognon Cristina E, Sears Rosalie C, Mills Gordon B, Gray Joe W, Tyner Jeffrey W

机构信息

Division of Hematology & Medical Oncology, Oregon Health & Science University.

Knight Cancer Institute, Oregon Health & Science University.

出版信息

Annu Rev Cancer Biol. 2021 Mar;5:39-57. doi: 10.1146/annurev-cancerbio-043020-125955. Epub 2020 Dec 8.

Abstract

The use of drug sensitivity testing to predict drug activity in individual patients has been actively explored for almost 50 years without delivering a generally useful predictive capability. However, extended failure should not be an indicator of futility. This is especially true in cancer research where ultimate success is often preceded by less successful attempts. For example, both immune- and genetic-based targeted therapies for cancer underwent numerous failed attempts before biological understanding, improved targets, and optimized drug development matured to facilitate an arsenal of transformational drugs. Similarly, the concept of directly assessing drug sensitivity of primary tumor biopsies-and the use of this information to help direct therapeutic approaches-has a long history with a definitive learning curve. In this review, we will survey the history of testing as well as the current state of the art for this field. We will present an update on methodologies and approaches, describe the use of these technologies to test cutting-edge drug classes, and describe an increasingly nuanced understanding of tumor types and models for which this strategy is most likely to succeed. We will consider the relative strengths and weaknesses of predicting drug activity across the broad biological context of cancer patients and tumor types. This will include an analysis of the potential for drug sensitivity testing to accurately predict drug activity within each of the biological hallmarks of cancer pathogenesis.

摘要

近50年来,人们一直在积极探索利用药物敏感性测试来预测个体患者的药物活性,但尚未获得普遍有用的预测能力。然而,长期失败不应被视为毫无意义的指标。在癌症研究中尤其如此,因为最终的成功往往之前伴随着不太成功的尝试。例如,基于免疫和基因的癌症靶向治疗在生物学认识、改进靶点和优化药物开发成熟以促成一系列变革性药物之前,经历了无数次失败的尝试。同样,直接评估原发性肿瘤活检的药物敏感性以及利用这些信息指导治疗方法的概念也有着悠久的历史,且有明确的学习曲线。在本综述中,我们将审视该测试的历史以及该领域的当前技术水平。我们将介绍方法和途径的最新进展,描述如何使用这些技术测试前沿药物类别,并描述对最有可能成功应用该策略的肿瘤类型和模型的日益细致入微的理解。我们将考虑在癌症患者和肿瘤类型的广泛生物学背景下预测药物活性的相对优势和劣势。这将包括分析药物敏感性测试在癌症发病机制的每个生物学特征内准确预测药物活性的潜力。

相似文献

1
Analysis of Primary Tumor Specimens for Evaluation of Cancer Therapeutics.
Annu Rev Cancer Biol. 2021 Mar;5:39-57. doi: 10.1146/annurev-cancerbio-043020-125955. Epub 2020 Dec 8.
3
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
5
New tools for old drugs: Functional genetic screens to optimize current chemotherapy.
Drug Resist Updat. 2018 Jan;36:30-46. doi: 10.1016/j.drup.2018.01.001. Epub 2018 Jan 12.
6
[Aiming for zero blindness].
Nippon Ganka Gakkai Zasshi. 2015 Mar;119(3):168-93; discussion 194.
8
Stem cells and cardiac repair: a critical analysis.
J Cardiovasc Transl Res. 2008 Mar;1(1):41-54. doi: 10.1007/s12265-007-9008-7. Epub 2008 Jan 31.

引用本文的文献

1
Acquired resistance in cancer: towards targeted therapeutic strategies.
Nat Rev Cancer. 2025 Jun 3. doi: 10.1038/s41568-025-00824-9.
2
models of leukemia development: the role of very small leukemic stem-like cells in the cellular transformation cascade.
Front Cell Dev Biol. 2025 Jan 3;12:1463807. doi: 10.3389/fcell.2024.1463807. eCollection 2024.
3
(Very) Small Stem-like Cells in Human Cell Cultures.
Cancers (Basel). 2023 Nov 22;15(23):5520. doi: 10.3390/cancers15235520.
4
Robust scoring of selective drug responses for patient-tailored therapy selection.
Nat Protoc. 2024 Jan;19(1):60-82. doi: 10.1038/s41596-023-00903-x. Epub 2023 Nov 23.
5
Precision oncology using ex vivo technology: a step towards individualised cancer care?
Expert Rev Mol Med. 2022 Oct 3;24:e39. doi: 10.1017/erm.2022.32.
6
Application of precision medicine in clinical routine in haematology-Challenges and opportunities.
J Intern Med. 2022 Aug;292(2):243-261. doi: 10.1111/joim.13508. Epub 2022 Jun 4.

本文引用的文献

1
Breeze: an integrated quality control and data analysis application for high-throughput drug screening.
Bioinformatics. 2020 Jun 1;36(11):3602-3604. doi: 10.1093/bioinformatics/btaa138.
2
Deep profiling of apoptotic pathways with mass cytometry identifies a synergistic drug combination for killing myeloma cells.
Cell Death Differ. 2020 Jul;27(7):2217-2233. doi: 10.1038/s41418-020-0498-z. Epub 2020 Jan 27.
3
On-chip recapitulation of clinical bone marrow toxicities and patient-specific pathophysiology.
Nat Biomed Eng. 2020 Apr;4(4):394-406. doi: 10.1038/s41551-019-0495-z. Epub 2020 Jan 27.
4
Could 3D models of cancer enhance drug screening?
Biomaterials. 2020 Feb;232:119744. doi: 10.1016/j.biomaterials.2019.119744. Epub 2019 Dec 26.
5
Emerging organoid models: leaping forward in cancer research.
J Hematol Oncol. 2019 Dec 29;12(1):142. doi: 10.1186/s13045-019-0832-4.
6
HBO1 is required for the maintenance of leukaemia stem cells.
Nature. 2020 Jan;577(7789):266-270. doi: 10.1038/s41586-019-1835-6. Epub 2019 Dec 11.
7
UM171 induces a homeostatic inflammatory-detoxification response supporting human HSC self-renewal.
PLoS One. 2019 Nov 8;14(11):e0224900. doi: 10.1371/journal.pone.0224900. eCollection 2019.
9
Towards manufacturing of human organoids.
Biotechnol Adv. 2020 Mar-Apr;39:107460. doi: 10.1016/j.biotechadv.2019.107460. Epub 2019 Oct 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验