Suppr超能文献

SPANOL(脑叶频谱分析):一种用于脑叶皮质表面个体和群体分割的频谱聚类框架。

SPANOL (SPectral ANalysis of Lobes): A Spectral Clustering Framework for Individual and Group Parcellation of Cortical Surfaces in Lobes.

作者信息

Lefèvre Julien, Pepe Antonietta, Muscato Jennifer, De Guio Francois, Girard Nadine, Auzias Guillaume, Germanaud David

机构信息

Centre National de la Recherche Scientifique, ENSAM, LSIS, Aix Marseille University, University of Toulon, Marseille, France.

Centre National de la Recherche Scientifique, Institut de Neurosciences de la Timone, Aix Marseille University, Marseille, France.

出版信息

Front Neurosci. 2018 May 31;12:354. doi: 10.3389/fnins.2018.00354. eCollection 2018.

Abstract

Understanding the link between structure, function and development in the brain is a key topic in neuroimaging that benefits from the tremendous progress of multi-modal MRI and its computational analysis. It implies, , to be able to parcellate the brain volume or cortical surface into biologically relevant regions. These parcellations may be inferred from existing atlases (e.g., Desikan) or sets of rules, as would do a neuroanatomist for lobes, but also directly driven from the data (e.g., functional or structural connectivity) with minimum a priori. In the present work, we aimed at using the intrinsic geometric information contained in the eigenfunctions of Laplace-Beltrami Operator to obtain parcellations of the cortical surface based only on its description by triangular meshes. We proposed a framework adapted from spectral clustering, which is general in scope and suitable for the co-parcellation of a group of subjects. We applied it to a dataset of 62 adults, optimized it and revealed a striking agreement between parcels produced by this unsupervised clustering and Freesurfer lobes (Desikan atlas), which cannot be explained by chance. Constituting the first reported attempt of spectral-based fully unsupervised segmentation of neuroanatomical regions such as lobes, spectral analysis of lobes (Spanol) could conveniently be fitted into a multimodal pipeline to ease, optimize or speed-up lobar or sub-lobar segmentation. In addition, we showed promising results of Spanol on smoother brains and notably on a dataset of 15 fetuses, with an interest for both the understanding of cortical ontogeny and the applicative field of perinatal computational neuroanatomy.

摘要

理解大脑结构、功能与发育之间的联系是神经影像学中的一个关键主题,这得益于多模态磁共振成像(MRI)及其计算分析的巨大进展。这意味着要能够将脑容量或皮质表面分割成具有生物学意义的区域。这些分割可以从现有的图谱(如Desikan图谱)或规则集中推断出来,就像神经解剖学家对脑叶所做的那样,但也可以在最少先验知识的情况下直接由数据(如功能或结构连接性)驱动。在本研究中,我们旨在利用拉普拉斯 - 贝尔特拉米算子本征函数中包含的内在几何信息,仅基于皮质表面的三角网格描述来获得其分割。我们提出了一个改编自谱聚类的框架,该框架具有广泛的适用性,适用于一组受试者的共同分割。我们将其应用于62名成年人的数据集,对其进行了优化,并发现这种无监督聚类产生的脑区与FreeSurfer脑叶(Desikan图谱)之间存在惊人的一致性,这并非偶然。作为首次报道的基于谱分析的对脑叶等神经解剖区域进行完全无监督分割的尝试,脑叶的谱分析(Spanol)可以方便地融入多模态流程中,以简化、优化或加速脑叶或脑叶以下区域的分割。此外,我们展示了Spanol在更平滑的大脑上,特别是在15例胎儿的数据集上取得的有前景的结果,这对于理解皮质个体发育以及围产期计算神经解剖学的应用领域都具有重要意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验