Suppr超能文献

使用机器学习预测骨质疏松症治疗后的骨密度反应,以辅助个性化治疗。

Bone mineral density response prediction following osteoporosis treatment using machine learning to aid personalized therapy.

机构信息

Department of Orthopaedics, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.

Biomedical Informatics Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.

出版信息

Sci Rep. 2021 Jul 5;11(1):13811. doi: 10.1038/s41598-021-93152-5.

Abstract

Osteoporosis is a global health problem for ageing populations. The goals of osteoporosis treatment are to improve bone mineral density (BMD) and prevent fractures. One major obstacle that remains a great challenge to achieve the goals is how to select the best treatment regimen for individual patients. We developed a computational model from 8981 clinical variables, including demographic data, diagnoses, laboratory results, medications, and initial BMD results, taken from 10-year period of electronic medical records to predict BMD response after treatment. We trained 7 machine learning models with 13,562 osteoporosis treatment instances [comprising 5080 (37.46%) inadequate treatment responses and 8482 (62.54%) adequate responses] and selected the best model (Random Forests with area under the receiver operating curve of 0.70, accuracy of 0.69, precision of 0.70, and recall of 0.89) to individually predict treatment responses of 11 therapeutic regimens, then selected the best predicted regimen to compare with the actual regimen. The results showed that the average treatment response of the recommended regimens was 9.54% higher than the actual regimens. In summary, our novel approach using a machine learning-based decision support system is capable of predicting BMD response after osteoporosis treatment and personalising the most appropriate treatment regimen for an individual patient.

摘要

骨质疏松症是全球老龄化人口面临的一个健康问题。骨质疏松症治疗的目标是提高骨密度(BMD)并预防骨折。实现这些目标的一个主要障碍是如何为个体患者选择最佳的治疗方案。我们从 8981 项临床变量中开发了一个计算模型,这些变量包括人口统计学数据、诊断、实验室结果、药物和初始 BMD 结果,这些数据来自 10 年的电子病历,用于预测治疗后的 BMD 反应。我们使用 13562 个骨质疏松症治疗实例(包括 5080 个(37.46%)治疗反应不足和 8482 个(62.54%)治疗反应充分)训练了 7 个机器学习模型,并选择了最佳模型(随机森林,ROC 曲线下面积为 0.70,准确性为 0.69,精确性为 0.70,召回率为 0.89)来单独预测 11 种治疗方案的治疗反应,然后选择最佳预测方案与实际方案进行比较。结果表明,推荐方案的平均治疗反应比实际方案高 9.54%。总之,我们使用基于机器学习的决策支持系统的新方法能够预测骨质疏松症治疗后的 BMD 反应,并为个体患者个性化最适合的治疗方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b104/8257695/a886fbf406b9/41598_2021_93152_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验