Suppr超能文献

基于机器学习的骨质疏松风险预测模型及其在大样本队列中的验证。

A Prediction Model for Osteoporosis Risk Using a Machine-Learning Approach and Its Validation in a Large Cohort.

机构信息

Department of Bioconvergence, Hoseo University, Asan, Korea.

Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan, Korea.

出版信息

J Korean Med Sci. 2023 May 29;38(21):e162. doi: 10.3346/jkms.2023.38.e162.

Abstract

BACKGROUND

Osteoporosis develops in the elderly due to decreased bone mineral density (BMD), potentially increasing bone fracture risk. However, the BMD is not regularly measured in a clinical setting. This study aimed to develop a good prediction model for the osteoporosis risk using a machine learning (ML) approach in adults over 40 years in the Ansan/Anseong cohort and the association of predicted osteoporosis risk with a fracture in the Health Examinees (HEXA) cohort.

METHODS

The 109 demographic, anthropometric, biochemical, genetic, nutrient, and lifestyle variables of 8,842 participants were manually selected in an Ansan/Anseong cohort and included in the ML algorithm. The polygenic risk score (PRS) of osteoporosis was generated with a genome-wide association study and added for the genetic impact of osteoporosis. Osteoporosis was defined with < -2.5 T scores of the tibia or radius compared to people in their 20s-30s. They were divided randomly into the training (n = 7,074) and test (n = 1,768) sets-Pearson's correlation between the predicted osteoporosis risk and fracture in the HEXA cohort.

RESULTS

XGBoost, deep neural network, and random forest generated the prediction model with a high area under the curve (AUC, 0.86) of the receiver operating characteristic (ROC) with 10, 15, and 20 features; the prediction model by XGBoost had the highest AUC of ROC, high accuracy and k-fold values (> 0.85) in 15 features among seven ML approaches. The model included the genetic factor, genders, number of children and breastfed children, age, residence area, education, seasons to measure, height, smoking status, hormone replacement therapy, serum albumin, hip circumferences, vitamin B6 intake, and body weight. The prediction models for women alone were similar to those for both genders, with lower accuracy. When the prediction model was applied to the HEXA study, the correlation between the fracture incidence and predicted osteoporosis risk was significant but weak (r = 0.173, < 0.001).

CONCLUSION

The prediction model for osteoporosis risk generated by XGBoost can be applied to estimate osteoporosis risk. The biomarkers can be considered for enhancing the prevention, detection, and early therapy of osteoporosis risk in Asians.

摘要

背景

老年人由于骨密度(BMD)下降而发生骨质疏松症,这可能会增加骨折的风险。然而,在临床环境中并未定期测量 BMD。本研究旨在使用机器学习(ML)方法,对安山/安城队列中 40 岁以上的成年人进行骨质疏松风险的良好预测模型开发,并将预测的骨质疏松风险与健康受检者(HEXA)队列中的骨折进行关联。

方法

从安山/安城队列中手动选择了 8842 名参与者的 109 个人口统计学、人体测量学、生化、遗传、营养和生活方式变量,并将其纳入 ML 算法。使用全基因组关联研究生成骨质疏松症的多基因风险评分(PRS),并加入骨质疏松症的遗传影响。骨质疏松症的定义为与 20-30 岁人群相比,胫骨或桡骨的 T 评分< -2.5。他们被随机分为训练集(n = 7074)和测试集(n = 1768)-Pearson 相关性分析,预测骨质疏松风险与 HEXA 队列中骨折的相关性。

结果

XGBoost、深度神经网络和随机森林分别生成了具有高曲线下面积(AUC,0.86)的接收器工作特征(ROC)预测模型,特征数分别为 10、15 和 20;XGBoost 预测模型的 AUC 最高,ROC 准确性和 K-折值(> 0.85)在 7 种 ML 方法中都达到了 15 个特征。该模型包含遗传因素、性别、子女数量和母乳喂养子女数量、年龄、居住地区、教育程度、测量季节、身高、吸烟状况、激素替代疗法、血清白蛋白、臀围、维生素 B6 摄入量和体重。仅适用于女性的预测模型与两性的预测模型相似,但准确性较低。当将预测模型应用于 HEXA 研究时,骨折发生率与预测骨质疏松风险之间的相关性显著但较弱(r = 0.173,<0.001)。

结论

XGBoost 生成的骨质疏松风险预测模型可用于估计骨质疏松风险。这些生物标志物可用于增强亚洲人对骨质疏松风险的预防、检测和早期治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a59/10226854/4e2e21aa7e3e/jkms-38-e162-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验