Suppr超能文献

眼组织的功能整合与屈光性眼球发育:机制与途径。

Functional integration of eye tissues and refractive eye development: Mechanisms and pathways.

机构信息

Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA.

Section of Neurobiology of the Eye, Ophthalmic Research Institute, University of Tuebingen, Tuebingen, Germany; Myopia Research Group, Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland.

出版信息

Exp Eye Res. 2021 Aug;209:108693. doi: 10.1016/j.exer.2021.108693. Epub 2021 Jul 3.

Abstract

Refractive eye development is a tightly coordinated developmental process. The general layout of the eye and its various components are established during embryonic development, which involves a complex cross-tissue signaling. The eye then undergoes a refinement process during the postnatal emmetropization process, which relies heavily on the integration of environmental and genetic factors and is controlled by an elaborate genetic network. This genetic network encodes a multilayered signaling cascade, which converts visual stimuli into molecular signals that guide the postnatal growth of the eye. The signaling cascade underlying refractive eye development spans across all ocular tissues and comprises multiple signaling pathways. Notably, tissue-tissue interaction plays a key role in both embryonic eye development and postnatal eye emmetropization. Recent advances in eye biometry, physiological optics and systems genetics of refractive error have significantly advanced our understanding of the biological processes involved in refractive eye development and provided a framework for the development of new treatment options for myopia. In this review, we summarize the recent data on the mechanisms and signaling pathways underlying refractive eye development and discuss new evidence suggesting a wide-spread signal integration across different tissues and ocular components involved in visually guided eye growth.

摘要

屈光性眼球发育是一个紧密协调的发育过程。眼球的总体布局及其各种组成部分在胚胎发育过程中就已确定,这涉及到复杂的跨组织信号传递。然后,眼球在出生后的正视化过程中经历一个精细化过程,这个过程严重依赖于环境和遗传因素的整合,并受精细的遗传网络控制。这个遗传网络编码了一个多层次的信号级联,将视觉刺激转化为分子信号,指导眼球的出生后生长。屈光性眼球发育的信号级联跨越所有眼部组织,并包含多个信号通路。值得注意的是,组织间的相互作用在胚胎眼球发育和出生后眼球正视化中都起着关键作用。眼生物测量学、生理光学和近视的系统遗传学的最新进展极大地促进了我们对屈光性眼球发育相关生物学过程的理解,并为近视的新治疗选择的开发提供了框架。在这篇综述中,我们总结了屈光性眼球发育的机制和信号通路的最新数据,并讨论了新的证据,表明在视觉引导的眼球生长所涉及的不同组织和眼部成分中存在广泛的信号整合。

相似文献

10
Origins of Refractive Errors: Environmental and Genetic Factors.屈光不正的起源:环境和遗传因素。
Annu Rev Vis Sci. 2019 Sep 15;5:47-72. doi: 10.1146/annurev-vision-091718-015027.

引用本文的文献

5
Longitudinal measures of peripheral optical quality in young children.幼儿外周光学质量的纵向测量
Ophthalmic Physiol Opt. 2025 Mar;45(2):550-564. doi: 10.1111/opo.13438. Epub 2025 Jan 24.
7
Chromatic cues for the sign of defocus in the peripheral retina.周边视网膜散焦信号的颜色线索。
Biomed Opt Express. 2024 Aug 8;15(9):5098-5114. doi: 10.1364/BOE.537268. eCollection 2024 Sep 1.

本文引用的文献

2
4
Retinoic acid synthesis by a population of choroidal stromal cells.脉络膜基质细胞产生维甲酸。
Exp Eye Res. 2020 Dec;201:108252. doi: 10.1016/j.exer.2020.108252. Epub 2020 Sep 19.
5
Signals for defocus arise from longitudinal chromatic aberration in chick.鸡的纵向色差产生离焦信号。
Exp Eye Res. 2020 Sep;198:108126. doi: 10.1016/j.exer.2020.108126. Epub 2020 Jul 24.
10
Morphological changes of human crystalline lens in myopia.近视患者人晶状体的形态学变化。
Biomed Opt Express. 2019 Nov 5;10(12):6084-6095. doi: 10.1364/BOE.10.006084. eCollection 2019 Dec 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验