Department of Neurosurgery, University of Oklahoma Health Sciences Centre, Oklahoma City, OK, USA.
Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, Australia.
Clin Neurol Neurosurg. 2021 Aug;207:106765. doi: 10.1016/j.clineuro.2021.106765. Epub 2021 Jun 17.
Patients with ideomotor apraxia (IMA) present with selective impairments in higher-order motor cognition and execution without damage to any motor or sensory pathways. Although extensive research has been conducted to determine the regions of interest (ROIs) underlying these unique impairments, previous models are heterogeneous and may be further clarified based on their structural connectivity, which has been far less described.
The goal of this research is to propose an anatomically concise network model for the neurophysiologic basis of IMA, specific to the voluntary pantomime, imitation and tool execution, based on intrinsic white matter connectivity.
We utilized meta-analytic software to identify relevant ROIs in ideomotor apraxia as reported in the literature based on functional neuroimaging data with healthy participants. After generating an activation likelihood estimation (ALE) of relevant ROIs, cortical parcellations overlapping the ALE were used to construct an anatomically precise model of anatomic substrates using the parcellation scheme outlined by the Human Connectome Project (HCP). Deterministic tractography was then performed on 25 randomly selected, healthy HCP subjects to determine the structural connectivity underlying the identified ROIs.
10 task-based fMRI studies met our inclusion criteria and the ALE analysis demonstrated 6 ROIs to constitute the IMA network: SCEF, FOP4, MIP, AIP, 7AL, and 7PC. These parcellations represent a fronto-parietal network consisting mainly of intra-parietal, U-shaped association fibers (40%) and long-range inferior fronto-occipital fascicle (IFOF) fibers (50%). These findings support previous functional models based on dual-stream motor processing.
We constructed a preliminary model demonstrating the underlying structural interconnectedness of anatomic substrates involved in higher-order motor functioning which is seen impaired in IMA. Our model provides support for previous dual-stream processing frameworks discussed in the literature, but further clarification is necessary with voxel-based lesion studies of IMA to further refine these findings.
患有意念运动性失用症(IMA)的患者表现出选择性的高阶运动认知和执行障碍,而没有任何运动或感觉通路的损伤。尽管已经进行了广泛的研究来确定这些独特损伤的感兴趣区域(ROI),但之前的模型是异构的,并且可以根据它们的结构连接性进一步阐明,而结构连接性则描述得较少。
本研究旨在基于内在白质连通性,为特定于自愿模仿、模仿和工具执行的 IMA 的神经生理基础提出一个解剖学上简洁的网络模型。
我们使用元分析软件根据健康参与者的功能神经影像学数据,确定文献中报告的 IMA 相关 ROI。在对相关 ROI 进行激活似然估计(ALE)后,使用与 ALE 重叠的皮质分割来构建解剖学精确的模型,该模型使用由人类连接组计划(HCP)概述的分割方案。然后对 25 名随机选择的健康 HCP 受试者进行确定性束追踪,以确定确定的 ROI 下的结构连通性。
10 项基于任务的 fMRI 研究符合我们的纳入标准,ALE 分析表明有 6 个 ROI 构成了 IMA 网络:SCEF、FOP4、MIP、AIP、7AL 和 7PC。这些分割代表了一个主要由顶内、U 形联合纤维(40%)和长程下额枕束纤维(50%)组成的额顶叶网络。这些发现支持基于双通流运动处理的先前功能模型。
我们构建了一个初步的模型,证明了在 IMA 中受损的高阶运动功能所涉及的解剖学基础的潜在结构相互连接性。我们的模型为文献中讨论的先前双通流处理框架提供了支持,但需要进一步澄清 IMA 的基于体素的病变研究,以进一步细化这些发现。