Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
The Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; Central Oxford Structural Molecular Imaging Centre (COSMIC), University of Oxford, Oxford OX1 3RE, UK; Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA.
Structure. 2021 Oct 7;29(10):1182-1191.e4. doi: 10.1016/j.str.2021.06.013. Epub 2021 Jul 8.
Tuberculosis (TB) is the leading cause of death from a single infectious agent and in 2019 an estimated 10 million people worldwide contracted the disease. Although treatments for TB exist, continual emergence of drug-resistant variants necessitates urgent development of novel antituberculars. An important new target is the lipid transporter MmpL3, which is required for construction of the unique cell envelope that shields Mycobacterium tuberculosis (Mtb) from the immune system. However, a structural understanding of the mutations in Mtb MmpL3 that confer resistance to the many preclinical leads is lacking, hampering efforts to circumvent resistance mechanisms. Here, we present the cryoelectron microscopy structure of Mtb MmpL3 and use it to comprehensively analyze the mutational landscape of drug resistance. Our data provide a rational explanation for resistance variants local to the central drug binding site, and also highlight a potential alternative route to resistance operating within the periplasmic domain.
结核病(TB)是单一传染病病原体导致的主要死亡原因,据估计,2019 年全球有 1000 万人感染了这种疾病。尽管存在结核病的治疗方法,但耐药变体的不断出现迫切需要开发新的抗结核药物。一个重要的新目标是脂质转运蛋白 MmpL3,它是构建独特的细胞包膜所必需的,该包膜使结核分枝杆菌(Mtb)免受免疫系统的侵害。然而,对赋予许多临床前先导化合物耐药性的 Mtb MmpL3 突变缺乏结构理解,这阻碍了规避耐药机制的努力。在这里,我们展示了 Mtb MmpL3 的冷冻电子显微镜结构,并利用它全面分析了耐药性的突变景观。我们的数据为位于中央药物结合位点的耐药变体提供了合理的解释,同时还突出了在周质域内起作用的潜在替代耐药途径。