MEDCIDS - Department of Community Medicine, Information and Health Decision Sciences; Faculty of Medicine, University of Porto, Porto, Portugal.
CINTESIS - Center for Health Technology and Services Research; University of Porto, Porto, Portugal.
J Med Internet Res. 2021 Jul 6;23(7):e27044. doi: 10.2196/27044.
In contrast to air pollution and pollen exposure, data on the occurrence of the common cold are difficult to incorporate in models predicting asthma hospitalizations.
This study aims to assess whether web-based searches on common cold would correlate with and help to predict asthma hospitalizations.
We analyzed all hospitalizations with a main diagnosis of asthma occurring in 5 different countries (Portugal, Spain, Finland, Norway, and Brazil) for a period of approximately 5 years (January 1, 2012-December 17, 2016). Data on web-based searches on common cold were retrieved from Google Trends (GT) using the pseudo-influenza syndrome topic and local language search terms for common cold for the same countries and periods. We applied time series analysis methods to estimate the correlation between GT and hospitalization data. In addition, we built autoregressive models to forecast the weekly number of asthma hospitalizations for a period of 1 year (June 2015-June 2016) based on admissions and GT data from the 3 previous years.
In time series analyses, GT data on common cold displayed strong correlations with asthma hospitalizations occurring in Portugal (correlation coefficients ranging from 0.63 to 0.73), Spain (ρ=0.82-0.84), and Brazil (ρ=0.77-0.83) and moderate correlations with those occurring in Norway (ρ=0.32-0.35) and Finland (ρ=0.44-0.47). Similar patterns were observed in the correlation between forecasted and observed asthma hospitalizations from June 2015 to June 2016, with the number of forecasted hospitalizations differing on average between 12% (Spain) and 33% (Norway) from observed hospitalizations.
Common cold-related web-based searches display moderate-to-strong correlations with asthma hospitalizations and may be useful in forecasting them.
与空气污染和花粉暴露相比,普通感冒的发生数据很难纳入预测哮喘住院的模型中。
本研究旨在评估基于网络的普通感冒搜索是否与哮喘住院相关,并有助于预测哮喘住院。
我们分析了 5 个不同国家(葡萄牙、西班牙、芬兰、挪威和巴西)在大约 5 年期间(2012 年 1 月 1 日至 2016 年 12 月 17 日)因哮喘住院的所有病例。使用 Google Trends(GT)检索普通感冒相关的网络搜索数据,使用流感样综合征主题和同一国家和时期的普通感冒本地语言搜索词。我们应用时间序列分析方法来估计 GT 与住院数据之间的相关性。此外,我们基于前 3 年的住院和 GT 数据,建立自回归模型来预测未来 1 年(2015 年 6 月至 2016 年 6 月)每周哮喘住院人数。
在时间序列分析中,GT 上的普通感冒数据与葡萄牙(相关系数范围为 0.63 至 0.73)、西班牙(ρ=0.82-0.84)和巴西(ρ=0.77-0.83)的哮喘住院存在强相关性,与挪威(ρ=0.32-0.35)和芬兰(ρ=0.44-0.47)的哮喘住院存在中度相关性。在 2015 年 6 月至 2016 年 6 月的哮喘住院预测值与实际值之间的相关性中也观察到了类似的模式,预测住院人数与实际住院人数平均相差 12%(西班牙)至 33%(挪威)。
基于网络的普通感冒搜索与哮喘住院具有中度至高度相关性,可能有助于预测哮喘住院。