Suppr超能文献

临床胰腺腺癌治疗中光动力预处理的 CT 放射组学特征。

CT radiomic features of photodynamic priming in clinical pancreatic adenocarcinoma treatment.

机构信息

Thayer School of Engineering, Dartmouth College, Hanover NH 03755, United States of America.

Dartmouth-Hitchcock Department of Radiology, Lebanon NH 03756, United States of America.

出版信息

Phys Med Biol. 2021 Aug 23;66(17). doi: 10.1088/1361-6560/ac1458.

Abstract

Photodynamic therapy (PDT) offers localized focal ablation in unresectable pancreatic tumors while tissues surrounding the treatment volume experience a lower light dose, termed photodynamic priming (PDP). While PDP does not cause tissue damage, it has been demonstrated to promote vascular permeability, improve drug delivery, alleviate tumor cell density, and reduce desmoplasia and the resultant internal pressure in pre-clinical evaluation. Preclinical data supports PDP as a neoadjuvant therapy beneficial to subsequent chemotherapy or immunotherapy, yet it is challenging to quantify PDP effects in clinical treatment without additional imaging and testing. This study investigated the potential of radiomic analysis using CT scans acquired before and after PDT to identify areas experiencing PDT-induced necrosis as well as quantify PDP effects in the surrounding tissues. A total of 235 CT tumor slices from seven patients undergoing PDT for pancreatic tumors were examined. Radiomic features assessed included intensity metrics (CT number in Hounsfield Units) and texture analysis using several gray-level co-occurrence matrix (GLCM) parameters. Pre-treatment scans of tumor areas that resulted in PDT-induced necrosis showed statistically significant differences in intensity and texture-based features that could be used to predict the regions that did respond (paired t-test, response versus no response, < 0.001). Evaluation of PDP effects on the surrounding tissues also demonstrated statistically significant differences, in tumor mean value, standard deviation, and GLCM parameters of contrast, dissimilarity and homogeneity (t-test, pre versus post, < 0.001). Using leave-one-out cross validation, six intensity and texture-based features were combined into a support-vector machine model which demonstrated reliable prediction of treatment effects for six out of seven patients (ROC curve, AUC = 0.93). This study provides pilot evidence that texture features extracted from CT scans could be utilized as an effective clinical diagnostic prediction and assessment of PDT and PDP effects in pancreatic tumors. (clinical trial NCT03033225).

摘要

光动力疗法(PDT)可在无法切除的胰腺肿瘤中提供局部聚焦消融,而治疗区域周围的组织则接受较低的光剂量,称为光动力预激活(PDP)。虽然 PDP 不会造成组织损伤,但已证明它可以促进血管通透性、改善药物输送、减轻肿瘤细胞密度,并减少肿瘤内部的纤维变性和由此产生的压力。临床前数据支持 PDP 作为一种新辅助治疗方法,有利于随后的化疗或免疫治疗,但在没有额外的成像和测试的情况下,在临床治疗中量化 PDP 效果具有挑战性。本研究调查了使用 PDT 前后获取的 CT 扫描进行放射组学分析的潜力,以识别经历 PDT 诱导坏死的区域,并量化周围组织中的 PDP 效应。对 7 名接受 PDT 治疗胰腺肿瘤的患者的 235 张 CT 肿瘤切片进行了检查。评估的放射组学特征包括强度指标(亨斯菲尔德单位中的 CT 数)和使用几种灰度共生矩阵(GLCM)参数进行的纹理分析。导致 PDT 诱导坏死的肿瘤区域的预处理扫描显示,在可用于预测有反应区域的强度和基于纹理的特征上存在统计学显著差异(配对 t 检验,反应与无反应,<0.001)。对周围组织的 PDP 效应的评估也表明存在统计学显著差异,表现在肿瘤平均值、标准差和 GLCM 参数的对比度、非相似性和同质性上(t 检验,预处理与后处理,<0.001)。使用留一法交叉验证,将六个基于强度和纹理的特征组合到支持向量机模型中,该模型对七名患者中的六名患者的治疗效果进行了可靠的预测(ROC 曲线,AUC=0.93)。本研究提供了初步证据,表明从 CT 扫描中提取的纹理特征可用于作为有效临床诊断预测,并评估胰腺肿瘤中的 PDT 和 PDP 效应。(临床试验 NCT03033225)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/387c/10322215/55be8f44d1d2/nihms-1913183-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验