Department of Pharmaceutical Biotechnology, JSS Academy of Higher Education & Research, JSS College of Pharmacy, Ooty, 643001, Tamil Nadu, India.
Department of Pharmacognosy & Phytopharmacy, JSS Academy of Higher Education & Research- JSS College of Pharmacy, Ooty, 643001, Tamil Nadu, India.
Curr Pharm Biotechnol. 2022;23(5):679-706. doi: 10.2174/1389201022666210714145356.
Efficient and controlled internalization of NPs into the cells depends on their physicochemical properties and dynamics of the plasma membrane. NPs-cell interaction is a complex process that decides the fate of NPs internalization through different endocytosis pathways.
The aim of this review is to highlight the physicochemical properties of synthesized nanoparticles (NPs) and their interaction with the cellular-dynamics and pathways like phagocytosis, pinocytosis, macropinocytosis, clathrin, and caveolae-mediated endocytosis, and the involvement of effector proteins domain such as clathrin, AP2, caveolin, Arf6, Cdc42, dynamin and cell surface receptors in the endocytosis process of NPs.
An electronic search was performed to explore the focused reviews and research articles on types of endocytosis and physicochemical properties of nanoparticles and their impact on cellular internalizations. The search was limited to peer-reviewed journals in the PubMed database.
This article discusses in detail, how different types of NPs and their physicochemical properties such as size, shape, aspect ratio, surface charge, hydrophobicity, elasticity, stiffness, corona formation, and surface functionalization change the pattern of endocytosis in the presence of different pharmacological blockers. Some external forces like a magnetic field, electric field, and ultrasound exploit the cell membrane dynamics to permeabilize them for efficient internalization with respect to fundamental principles of membrane bending and pore formation.
This review will be useful to attract and guide the audience to understand the endocytosis mechanism and its pattern with respect to physicochemical properties of NPs to improve their efficacy and targeting to achieve the impactful outcome in drug-delivery and theranostic applications.
纳米颗粒(NPs)的高效和受控内化取决于其物理化学性质和质膜动力学。NPs 与细胞的相互作用是一个复杂的过程,它通过不同的内吞作用途径决定了 NPs 内化的命运。
本综述的目的是强调合成纳米颗粒(NPs)的物理化学性质及其与细胞动力学和途径的相互作用,如吞噬作用、胞饮作用、巨胞饮作用、网格蛋白和小窝介导的内吞作用,以及涉及效应蛋白结构域如网格蛋白、衔接蛋白 2(AP2)、小窝蛋白、Arf6、CDC42、动力蛋白和细胞表面受体在 NPs 内吞作用过程中的作用。
进行了电子搜索,以探索关于内吞作用类型和纳米颗粒物理化学性质及其对细胞内化影响的重点综述和研究文章。搜索仅限于 PubMed 数据库中的同行评议期刊。
本文详细讨论了不同类型的 NPs 及其物理化学性质,如大小、形状、纵横比、表面电荷、疏水性、弹性、刚性、冠形成和表面功能化,如何改变内吞作用的模式在存在不同的药理学阻滞剂的情况下。一些外部力,如磁场、电场和超声波,利用细胞膜动力学来使它们变得有渗透性,以便在膜弯曲和孔形成的基本原则的基础上进行有效的内化。
本综述将有助于吸引和指导观众了解内吞作用机制及其与 NPs 物理化学性质的关系,以提高其疗效和靶向性,从而在药物输送和治疗应用中实现有影响力的结果。