Suppr超能文献

利用纳米颗粒揭示巨胞饮作用。

Revealing macropinocytosis using nanoparticles.

机构信息

Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.

Stephenson School of Biomedical Engineering, Gallogly College of Engineering, University of Oklahoma, Norman, OK, 73019, USA.

出版信息

Mol Aspects Med. 2022 Feb;83:100993. doi: 10.1016/j.mam.2021.100993. Epub 2021 Jul 16.

Abstract

Endocytosis mechanisms are one of the methods that cells use to interact with their environments. Endocytosis mechanisms vary from the clathrin-mediated endocytosis to the receptor independent macropinocytosis. Macropinocytosis is a niche of endocytosis that is quickly becoming more relevant in various fields of research since its discovery in the 1930s. Macropinocytosis has several distinguishing factors from other receptor-mediated forms of endocytosis, including: types of extracellular material for uptake, signaling cascade, and niche uses between cell types. Nanoparticles (NPs) are an important tool for various applications, including drug delivery and disease treatment. However, surface engineering of NPs could be tailored to target them inside the cells exploiting different endocytosis pathways, such as endocytosis versus macropinocytosis. Such surface engineering of NPs mainly, size, charge, shape and the core material will allow identification of new adapter molecules regulating different endocytosis process and provide further insight into how cells tweak these pathways to meet their physiological need. In this review, we focus on the description of macropinocytosis, a lesser studied endocytosis mechanism than the conventional receptor mediated endocytosis. Additionally, we will discuss nanoparticle endocytosis (including macropinocytosis), and how the physio-chemical properties of the NP (size, charge, and surface coating) affect their intracellular uptake and exploiting them as tools to identify new adapter molecules regulating these processes.

摘要

内吞作用机制是细胞与环境相互作用的方法之一。内吞作用机制从网格蛋白介导的内吞作用到受体非依赖性的巨胞饮作用。巨胞饮作用是内吞作用的一个分支,自 20 世纪 30 年代发现以来,在各个研究领域中的相关性迅速增强。巨胞饮作用与其他受体介导的内吞作用形式有几个区别因素,包括:摄取的细胞外物质类型、信号级联和细胞类型之间的生态位用途。纳米颗粒(NPs)是各种应用的重要工具,包括药物输送和疾病治疗。然而,NP 的表面工程可以通过利用不同的内吞作用途径(例如内吞作用与巨胞饮作用)来靶向细胞内,从而进行调整。NP 的这种表面工程主要包括大小、电荷、形状和核心材料,将有助于识别新的衔接分子,这些分子可以调节不同的内吞作用过程,并进一步深入了解细胞如何调整这些途径以满足其生理需求。在这篇综述中,我们重点描述了巨胞饮作用,这是一种比传统受体介导的内吞作用研究较少的内吞作用机制。此外,我们将讨论纳米颗粒的内吞作用(包括巨胞饮作用),以及 NP 的物理化学性质(大小、电荷和表面涂层)如何影响它们的细胞内摄取,并将其用作识别调节这些过程的新衔接分子的工具。

相似文献

1
Revealing macropinocytosis using nanoparticles.
Mol Aspects Med. 2022 Feb;83:100993. doi: 10.1016/j.mam.2021.100993. Epub 2021 Jul 16.
2
Cellular Uptake Pathways of Nanoparticles: Process of Endocytosis and Factors Affecting their Fate.
Curr Pharm Biotechnol. 2022;23(5):679-706. doi: 10.2174/1389201022666210714145356.
3
Cellular uptake of extracellular vesicles is mediated by clathrin-independent endocytosis and macropinocytosis.
J Control Release. 2017 Nov 28;266:100-108. doi: 10.1016/j.jconrel.2017.09.019. Epub 2017 Sep 14.
4
Self-Assembled Core-Shell-Type Lipid-Polymer Hybrid Nanoparticles: Intracellular Trafficking and Relevance for Oral Absorption.
J Pharm Sci. 2017 Oct;106(10):3120-3130. doi: 10.1016/j.xphs.2017.05.029. Epub 2017 May 27.
10
Functional Diversity of Macropinocytosis.
Subcell Biochem. 2022;98:3-14. doi: 10.1007/978-3-030-94004-1_1.

引用本文的文献

1
Liposomal glytrexate formulation: improving antitumour efficacy and minimizing toxicity in breast cancer therapy.
Int J Pharm X. 2025 Jul 10;10:100356. doi: 10.1016/j.ijpx.2025.100356. eCollection 2025 Dec.
3
Zwitterionic Dipeptide Surface Functionalization of Detonation Nanodiamond for Enhanced Control in Biological Environments.
Angew Chem Int Ed Engl. 2025 Jun 17;64(25):e202501202. doi: 10.1002/anie.202501202. Epub 2025 May 19.
4
Cellular Uptake and Trafficking of Lipid Nanocarriers Using High-Resolution Electron Microscopy.
AAPS PharmSciTech. 2025 Feb 26;26(3):71. doi: 10.1208/s12249-025-03061-3.
5
DNA-loaded targeted nanoparticles as a safe platform to produce exogenous proteins in tumor B cells.
Front Immunol. 2025 Jan 22;15:1509322. doi: 10.3389/fimmu.2024.1509322. eCollection 2024.
7
Green Synthesis of Zinc Oxide Nanoparticles: Preparation, Characterization, and Biomedical Applications - A Review.
Int J Nanomedicine. 2024 Dec 3;19:12889-12937. doi: 10.2147/IJN.S487188. eCollection 2024.
10
Repair spinal cord injury with a versatile anti-oxidant and neural regenerative nanoplatform.
J Nanobiotechnology. 2024 Jun 20;22(1):351. doi: 10.1186/s12951-024-02610-5.

本文引用的文献

1
Experimental conditions influence the formation and composition of the corona around gold nanoparticles.
Cancer Nanotechnol. 2021;12(1):1. doi: 10.1186/s12645-020-00071-7. Epub 2021 Jan 6.
2
Effect of Physico-Chemical Properties of Nanoparticles on Their Intracellular Uptake.
Int J Mol Sci. 2020 Oct 28;21(21):8019. doi: 10.3390/ijms21218019.
3
Switching the intracellular pathway and enhancing the therapeutic efficacy of small interfering RNA by auroliposome.
Sci Adv. 2020 Jul 22;6(30):eaba5379. doi: 10.1126/sciadv.aba5379. eCollection 2020 Jul.
4
Ubiquitin-binding associated protein 2 regulates KRAS activation and macropinocytosis in pancreatic cancer.
FASEB J. 2020 Sep;34(9):12024-12039. doi: 10.1096/fj.201902826RR. Epub 2020 Jul 21.
5
Coordinated Ras and Rac Activity Shapes Macropinocytic Cups and Enables Phagocytosis of Geometrically Diverse Bacteria.
Curr Biol. 2020 Aug 3;30(15):2912-2926.e5. doi: 10.1016/j.cub.2020.05.049. Epub 2020 Jun 11.
6
Molecular mechanisms of dendritic cell migration in immunity and cancer.
Med Microbiol Immunol. 2020 Aug;209(4):515-529. doi: 10.1007/s00430-020-00680-4. Epub 2020 May 25.
7
Binge Drinking: Macropinocytosis Promotes Tumorigenic Growth of RAS-Mutant Cancers.
Trends Biochem Sci. 2020 Jun;45(6):459-461. doi: 10.1016/j.tibs.2020.02.009. Epub 2020 Mar 9.
8
Analysing the nanoparticle-protein corona for potential molecular target identification.
J Control Release. 2020 Jun 10;322:122-136. doi: 10.1016/j.jconrel.2020.03.008. Epub 2020 Mar 9.
9
Macropinocytosis Renders a Subset of Pancreatic Tumor Cells Resistant to mTOR Inhibition.
Cell Rep. 2020 Feb 25;30(8):2729-2742.e4. doi: 10.1016/j.celrep.2020.01.080.
10
Macropinocytosis drives T cell growth by sustaining the activation of mTORC1.
Nat Commun. 2020 Jan 10;11(1):180. doi: 10.1038/s41467-019-13997-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验