Bian Guoshuai, Pan Na, Luan Zhaohui, Sui Xin, Fan Wenxin, Xia Yanzhi, Sui Kunyan, Jiang Lei
State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao, 266071, P. R. China.
CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
Angew Chem Int Ed Engl. 2021 Sep 6;60(37):20294-20300. doi: 10.1002/anie.202108549. Epub 2021 Aug 9.
Emerging asymmetric ionic membranes consisting of two different porous membranes show great superiority in harvesting clean and renewable osmotic energy. The main barriers constraining their applications are incompatible interfaces and a low interfacial ionic transport efficiency, which are detrimental to the long-term stability and improvement of the power density. Here, continuous-gradient all-polysaccharide polyelectrolyte hydrogel membranes prepared by ultrafast reaction/diffusion have been demonstrated to enable high-performance osmotic energy conversion. Besides an inherent high ion conductivity and excellent ion selectivity, the anti-swelling polyelectrolyte gradient membranes preserve the ionic diode effect of the asymmetric membranes to facilitate one-way ion diffusion but circumvent adverse interfacial effects. In consequence, they can present ultrahigh power densities of 7.87 W m by mixing seawater and river water, far superior to state-of-the-art membranes.
由两种不同多孔膜组成的新型不对称离子膜在收集清洁可再生渗透能方面表现出巨大优势。限制其应用的主要障碍是不相容的界面和较低的界面离子传输效率,这对长期稳定性和功率密度的提高不利。在此,通过超快反应/扩散制备的连续梯度全多糖聚电解质水凝胶膜已被证明能够实现高性能的渗透能转换。除了固有的高离子电导率和优异的离子选择性外,抗溶胀聚电解质梯度膜保留了不对称膜的离子二极管效应,以促进单向离子扩散,但避免了不利的界面效应。因此,通过混合海水和河水,它们可以呈现出7.87 W m的超高功率密度,远优于现有技术的膜。