Saberi-Movahed Farshad, Mohammadifard Mahyar, Mehrpooya Adel, Rezaei-Ravari Mohammad, Berahmand Kamal, Rostami Mehrdad, Karami Saeed, Najafzadeh Mohammad, Hajinezhad Davood, Jamshidi Mina, Abedi Farshid, Mohammadifard Mahtab, Farbod Elnaz, Safavi Farinaz, Dorvash Mohammadreza, Vahedi Shahrzad, Eftekhari Mahdi, Saberi-Movahed Farid, Tavassoly Iman
College of Engineering, North Carolina State University, Raleigh, NC 22606, USA.
Department of Radiology, Birjand University of Medical Sciences, Birjand, Iran.
medRxiv. 2021 Jul 9:2021.07.07.21259699. doi: 10.1101/2021.07.07.21259699.
One of the most critical challenges in managing complex diseases like COVID-19 is to establish an intelligent triage system that can optimize the clinical decision-making at the time of a global pandemic. The clinical presentation and patients’ characteristics are usually utilized to identify those patients who need more critical care. However, the clinical evidence shows an unmet need to determine more accurate and optimal clinical biomarkers to triage patients under a condition like the COVID-19 crisis. Here we have presented a machine learning approach to find a group of clinical indicators from the blood tests of a set of COVID-19 patients that are predictive of poor prognosis and morbidity. Our approach consists of two interconnected schemes: Feature Selection and Prognosis Classification. The former is based on different Matrix Factorization (MF)-based methods, and the latter is performed using Random Forest algorithm. Our model reveals that Arterial Blood Gas (ABG) O Saturation and C-Reactive Protein (CRP) are the most important clinical biomarkers determining the poor prognosis in these patients. Our approach paves the path of building quantitative and optimized clinical management systems for COVID-19 and similar diseases.
在管理像新冠肺炎这样的复杂疾病时,最关键的挑战之一是建立一个智能分诊系统,该系统能够在全球大流行期间优化临床决策。临床表现和患者特征通常用于识别那些需要更重症护理的患者。然而,临床证据表明,在新冠肺炎危机这样的情况下,确定更准确和最佳的临床生物标志物以对患者进行分诊存在未满足的需求。在此,我们提出了一种机器学习方法,从一组新冠肺炎患者的血液检测中找出一组可预测不良预后和发病情况的临床指标。我们的方法由两个相互关联的方案组成:特征选择和预后分类。前者基于不同的基于矩阵分解(MF)的方法,后者使用随机森林算法进行。我们的模型表明动脉血气(ABG)氧饱和度和C反应蛋白(CRP)是决定这些患者不良预后的最重要临床生物标志物。我们的方法为构建针对新冠肺炎及类似疾病的定量和优化临床管理系统铺平了道路。