Suppr超能文献

解析 COVID-19 的临床生物标志物空间:探索基于矩阵分解的特征选择方法。

Decoding clinical biomarker space of COVID-19: Exploring matrix factorization-based feature selection methods.

机构信息

College of Engineering, North Carolina State University, Raleigh, NC, 22606, USA.

Department of Radiology, Birjand University of Medical Sciences, Birjand, Iran.

出版信息

Comput Biol Med. 2022 Jul;146:105426. doi: 10.1016/j.compbiomed.2022.105426. Epub 2022 Apr 5.

Abstract

One of the most critical challenges in managing complex diseases like COVID-19 is to establish an intelligent triage system that can optimize the clinical decision-making at the time of a global pandemic. The clinical presentation and patients' characteristics are usually utilized to identify those patients who need more critical care. However, the clinical evidence shows an unmet need to determine more accurate and optimal clinical biomarkers to triage patients under a condition like the COVID-19 crisis. Here we have presented a machine learning approach to find a group of clinical indicators from the blood tests of a set of COVID-19 patients that are predictive of poor prognosis and morbidity. Our approach consists of two interconnected schemes: Feature Selection and Prognosis Classification. The former is based on different Matrix Factorization (MF)-based methods, and the latter is performed using Random Forest algorithm. Our model reveals that Arterial Blood Gas (ABG) O Saturation and C-Reactive Protein (CRP) are the most important clinical biomarkers determining the poor prognosis in these patients. Our approach paves the path of building quantitative and optimized clinical management systems for COVID-19 and similar diseases.

摘要

管理 COVID-19 等复杂疾病的最大挑战之一是建立一个智能分诊系统,以便在全球大流行期间优化临床决策。临床表型和患者特征通常用于确定那些需要更关键护理的患者。然而,临床证据表明,需要确定更准确和更优的临床生物标志物,以在 COVID-19 危机等情况下对患者进行分诊。在这里,我们提出了一种机器学习方法,从一组 COVID-19 患者的血液检测中找到一组预测预后不良和发病率的临床指标。我们的方法包括两个相互关联的方案:特征选择和预后分类。前者基于不同的基于矩阵分解 (MF) 的方法,后者使用随机森林算法进行。我们的模型表明,动脉血气 (ABG) O 饱和度和 C 反应蛋白 (CRP) 是决定这些患者预后不良的最重要的临床生物标志物。我们的方法为 COVID-19 和类似疾病建立定量和优化的临床管理系统铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c001/8979841/e81aede6ba4b/ga1_lrg.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验