Suppr超能文献

基于中国深入的车对动力两轮车碰撞数据的自动驾驶测试场景生成。

Autonomous driving testing scenario generation based on in-depth vehicle-to-powered two-wheeler crash data in China.

机构信息

Key Laboratory of Traffic Safety on Track of Ministry of Education, School of Traffic & Transportation Engineering, Central South University, Changsha 410075, China; Chongqing Key Laboratory of Vehicle Emission and Economizing Energy, Chongqing 401122, China.

Key Laboratory of Traffic Safety on Track of Ministry of Education, School of Traffic & Transportation Engineering, Central South University, Changsha 410075, China.

出版信息

Accid Anal Prev. 2022 Oct;176:106812. doi: 10.1016/j.aap.2022.106812. Epub 2022 Aug 30.

Abstract

A reliable critical-scenario-based safety assessment of autonomous vehicles in China requires a thorough understanding of complex crash scenarios in Chinese background traffic. Based on actual crashes between a vehicle and a powered two-wheeler (PTW) in China, this study generated the autonomous driving testing scenarios from functional, logical and concrete levels. First, 239 video-recorded crash cases were selected from the China In-depth mobility Safety Study - Traffic Accident (CIMSS-TA) database. Using the k-medoids clustering method, six functional scenarios were generalized according to seven crash characteristics (time of day, road type, road surface, obstruction, motion of vehicle, motion of PTW, relative moving direction and position of PTW with respect to vehicle), which contained two straight road scenarios, two T-junction scenarios and two intersection scenarios. Then, using a trajectory analysis program written by Python, the dangerous time instant of each crash was extracted based on the relative trajectory. According to five dynamic parameters of dangerous time instant, namely vehicle velocity (Vehicle_V), PTW X'-coordinate velocity (PTW_VX'), PTW Y'-coordinate velocity (PTW_VY'), PTW X'-coordinate relative position (PTW_LocX') and PTW Y'-coordinate relative position (PTW_LocY'), a crash trigger scheme was built to remain a case challenging when the involved vehicle is replaced by an autonomous vehicle with completely different maneuvers. Using the kernel density estimation (KDE), the logical scenarios were evolved by calculating the distribution of these dynamic parameters in each cluster. The results showed that there were differences in the distribution of dynamic parameters between six functional scenarios. For instance, the Vehicle_V in the scenario where a vehicle turning right impacts with a right/right rear PTW traveling straight ahead was higher than that in the scenario where a vehicle changing to the left lane impacts with a left/left rear PTW traveling straight ahead, with ranges of (10 km/h, 30 km/h) and (5 km/h, 15 km/h), respectively. Finally, considering the correlation of dynamic parameters, a virtual crash generation approach based on the independent component analysis (ICA) representing the original crashes with independent parameters was proposed to obtain sufficient concrete testing scenarios. The results showed that the statistical characteristics of virtual crashes were consistent with those of original crashes. Therefore, the virtual crash generation approach was effective. And a concrete crossing testing scenario with the crash trigger conditions of Vehicle_V = 26.272 km/h, PTW_VX' = 15.567 km/h, PTW_VY' = -1.670 km/h, PTW_LocX' = -27.265 m and PTW_LocY' = 52. 149 m was especially demonstrated. This study provides a theoretical basis for generating autonomous driving testing scenarios and data support for establishing relevant testing schemes tailored to the traffic environment in China.

摘要

在中国,要对自动驾驶汽车进行可靠的基于关键场景的安全性评估,需要深入了解中国背景交通中的复杂碰撞场景。本研究基于中国深入移动安全研究-交通事故(CIMSS-TA)数据库中车辆与动力两轮车(PTW)之间的实际碰撞,从功能、逻辑和具体层面生成了自动驾驶测试场景。首先,从 CIMSS-TA 数据库中选择了 239 个视频记录的碰撞案例。使用 k-medoids 聚类方法,根据七个碰撞特征(一天中的时间、道路类型、路面、障碍物、车辆运动、PTW 运动、相对移动方向和 PTW 相对于车辆的位置)概括了六个功能场景,其中包含两个直道场景、两个 T 型路口场景和两个路口场景。然后,使用由 Python 编写的轨迹分析程序,根据相对轨迹提取每个碰撞的危险时刻。根据危险时刻的五个动态参数,即车辆速度(Vehicle_V)、PTW X' 坐标速度(PTW_VX')、PTW Y' 坐标速度(PTW_VY')、PTW X' 坐标相对位置(PTW_LocX')和 PTW Y' 坐标相对位置(PTW_LocY'),构建了一个碰撞触发方案,以保持当涉及的车辆被具有完全不同动作的自动驾驶车辆取代时的案例具有挑战性。使用核密度估计(KDE),通过计算每个簇中这些动态参数的分布来演化逻辑场景。结果表明,六个功能场景中动态参数的分布存在差异。例如,车辆右转时与正面行驶的右/右后 PTW 碰撞的场景中的 Vehicle_V 高于车辆变道到左车道时与正面行驶的左/左后 PTW 碰撞的场景,范围分别为(10 km/h,30 km/h)和(5 km/h,15 km/h)。最后,考虑到动态参数的相关性,提出了一种基于独立成分分析(ICA)的虚拟碰撞生成方法,该方法用独立参数表示原始碰撞,以获得足够的具体测试场景。结果表明,虚拟碰撞的统计特征与原始碰撞的统计特征一致。因此,虚拟碰撞生成方法是有效的。并特别展示了具有碰撞触发条件 Vehicle_V = 26.272 km/h、PTW_VX' = 15.567 km/h、PTW_VY' = -1.670 km/h、PTW_LocX' = -27.265 m 和 PTW_LocY' = 52.149 m 的具体交叉测试场景。本研究为生成自动驾驶测试场景提供了理论基础,并为建立适合中国交通环境的相关测试方案提供了数据支持。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验