Suppr超能文献

左心室舒张功能障碍继发肺动脉高压的预测模型

Predictive Modeling of Secondary Pulmonary Hypertension in Left Ventricular Diastolic Dysfunction.

作者信息

Harrod Karlyn K, Rogers Jeffrey L, Feinstein Jeffrey A, Marsden Alison L, Schiavazzi Daniele E

机构信息

Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN, United States.

Department of Digital Health, T.J. Watson Research Center, International Business Machines Corporation, Yorktown Heights, NY, United States.

出版信息

Front Physiol. 2021 Jul 1;12:666915. doi: 10.3389/fphys.2021.666915. eCollection 2021.

Abstract

Diastolic dysfunction is a common pathology occurring in about one third of patients affected by heart failure. This condition may not be associated with a marked decrease in cardiac output or systemic pressure and therefore is more difficult to diagnose than its systolic counterpart. Compromised relaxation or increased stiffness of the left ventricle induces an increase in the upstream pulmonary pressures, and is classified as secondary or group II pulmonary hypertension (2018 Nice classification). This may result in an increase in the right ventricular afterload leading to right ventricular failure. Elevated pulmonary pressures are therefore an important clinical indicator of diastolic heart failure (sometimes referred to as , HFpEF), showing significant correlation with associated mortality. However, accurate measurements of this quantity are typically obtained through invasive catheterization and after the onset of symptoms. In this study, we use the hemodynamic consistency of a differential-algebraic circulation model to predict pulmonary pressures in adult patients from other, possibly non-invasive, clinical data. We investigate several aspects of the problem, including the ability of model outputs to represent a sufficiently wide pathologic spectrum, the identifiability of the model's parameters, and the accuracy of the predicted pulmonary pressures. We also find that a classifier using the assimilated model parameters as features is free from the problem of missing data and is able to detect pulmonary hypertension with sufficiently high accuracy. For a cohort of 82 patients suffering from various degrees of heart failure severity, we show that systolic, diastolic, and wedge pulmonary pressures can be estimated on average within 8, 6, and 6 mmHg, respectively. We also show that, in general, increased data availability leads to improved predictions.

摘要

舒张功能障碍是一种常见的病理状况,约三分之一的心力衰竭患者会出现这种情况。这种情况可能与心输出量或体循环压力的显著降低无关,因此比收缩功能障碍更难诊断。左心室舒张功能受损或僵硬度增加会导致上游肺压力升高,被归类为继发性或II组肺动脉高压(2018年尼斯分类)。这可能导致右心室后负荷增加,进而导致右心室衰竭。因此,肺压力升高是舒张性心力衰竭(有时称为HFpEF)的重要临床指标,与相关死亡率显著相关。然而,这个量的准确测量通常是通过侵入性导管插入术并在症状出现后获得的。在本研究中,我们利用微分代数循环模型的血流动力学一致性,从其他可能非侵入性的临床数据预测成年患者的肺压力。我们研究了该问题的几个方面,包括模型输出代表足够广泛病理谱的能力、模型参数的可识别性以及预测肺压力的准确性。我们还发现,使用同化模型参数作为特征的分类器不存在数据缺失问题,并且能够以足够高的准确性检测肺动脉高压。对于一组82名患有不同程度心力衰竭严重程度的患者,我们表明收缩压、舒张压和楔压平均分别可以在8、6和6 mmHg范围内估计。我们还表明,一般来说,数据可用性的提高会导致预测改善。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5a2/8281259/c179f444be3a/fphys-12-666915-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验