Suppr超能文献

多尺度冠状动脉模拟中参数识别与不确定性量化的自动调谐

Automated Tuning for Parameter Identification and Uncertainty Quantification in Multi-scale Coronary Simulations.

作者信息

Tran Justin S, Schiavazzi Daniele E, Ramachandra Abhay B, Kahn Andrew M, Marsden Alison L

机构信息

Department of Pediatrics (Cardiology), Bioengineering and ICME, Stanford University, Stanford, CA, USA.

Department of Medicine, University of California San Diego, La Jolla, CA, USA.

出版信息

Comput Fluids. 2017 Jan 5;142:128-138. doi: 10.1016/j.compfluid.2016.05.015. Epub 2016 May 16.

Abstract

Atherosclerotic coronary artery disease, which can result in coronary artery stenosis, acute coronary artery occlusion, and eventually myocardial infarction, is a major cause of morbidity and mortality worldwide. Non-invasive characterization of coronary blood flow is important to improve understanding, prevention, and treatment of this disease. Computational simulations can now produce clinically relevant hemodynamic quantities using only non-invasive measurements, combining detailed three dimensional fluid mechanics with physiological models in a multiscale framework. These models, however, require specification of numerous input parameters and are typically tuned manually without accounting for uncertainty in the clinical data, hindering their application to large clinical studies. We propose an automatic, Bayesian, approach to parameter estimation based on adaptive Markov chain Monte Carlo sampling that assimilates non-invasive quantities commonly acquired in routine clinical care, quantifies the uncertainty in the estimated parameters and computes the confidence in local predicted hemodynamic indicators.

摘要

动脉粥样硬化性冠状动脉疾病可导致冠状动脉狭窄、急性冠状动脉阻塞,并最终引发心肌梗死,是全球发病和死亡的主要原因。冠状动脉血流的非侵入性特征对于增进对该疾病的理解、预防和治疗至关重要。现在,计算模拟仅使用非侵入性测量就能生成临床相关的血流动力学量,在多尺度框架中将详细的三维流体力学与生理模型相结合。然而,这些模型需要指定大量输入参数,并且通常是手动调整,而没有考虑临床数据中的不确定性,这阻碍了它们在大型临床研究中的应用。我们提出了一种基于自适应马尔可夫链蒙特卡罗采样的自动贝叶斯参数估计方法,该方法吸收了常规临床护理中常见的非侵入性量,量化估计参数中的不确定性,并计算对局部预测血流动力学指标的置信度。

相似文献

引用本文的文献

4
10
Branched Latent Neural Maps.分支潜在神经映射
Comput Methods Appl Mech Eng. 2024 Jan;418(Pt A). doi: 10.1016/j.cma.2023.116499. Epub 2023 Oct 9.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验