Su Xiaoxuan, Ma Wenxiao, Feng Di, Cheng Boyang, Wang Qian, Guo Zefeng, Zhou Demin, Tang Xinjing
State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38, Xueyuan Road, Beijing, 100191, China.
Angew Chem Int Ed Engl. 2021 Sep 27;60(40):21662-21667. doi: 10.1002/anie.202105942. Epub 2021 Aug 18.
There is an urgent need to develop antiviral drugs and alleviate the current COVID-19 pandemic. Herein we report the design and construction of chimeric oligonucleotides comprising a 2'-OMe-modified antisense oligonucleotide and a 5'-phosphorylated 2'-5' poly(A) (4A ) to degrade envelope and spike RNAs of SARS-CoV-2. The oligonucleotide was used for searching and recognizing target viral RNA sequence, and the conjugated 4A was used for guided RNase L activation to sequence-specifically degrade viral RNAs. Since RNase L can potently cleave single-stranded RNA during innate antiviral response, degradation efficiencies with these chimeras were twice as much as those with only antisense oligonucleotides for both SARS-CoV-2 RNA targets. In pseudovirus infection models, chimera-S4 achieved potent and broad-spectrum inhibition of SARS-CoV-2 and its N501Y and/or ΔH69/ΔV70 mutants, indicating a promising antiviral agent based on the nucleic acid-hydrolysis targeting chimera (NATAC) strategy.
迫切需要开发抗病毒药物并缓解当前的新冠疫情。在此,我们报告了嵌合寡核苷酸的设计与构建,该嵌合寡核苷酸由2'-O-甲基修饰的反义寡核苷酸和5'-磷酸化的2'-5'多聚腺苷酸(4A)组成,用于降解严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的包膜和刺突RNA。寡核苷酸用于搜索和识别目标病毒RNA序列,而共轭的4A用于引导核糖核酸酶L激活,以序列特异性方式降解病毒RNA。由于核糖核酸酶L在先天性抗病毒反应中能够有效切割单链RNA,对于这两个SARS-CoV-2 RNA靶点,这些嵌合体的降解效率是仅使用反义寡核苷酸时的两倍。在假病毒感染模型中,嵌合体-S4对SARS-CoV-2及其N501Y和/或ΔH69/ΔV70突变体实现了强效且广谱的抑制,表明基于核酸水解靶向嵌合体(NATAC)策略的抗病毒剂具有广阔前景。