Institute for Biomedical Engineering, ETH and University of Zurich, Switzerland.
Institute of Neuroinformatics, D-ITET, ETH and University of Zurich, Switzerland; Neuroscience Center, ETH and University of Zurich, Switzerland.
Neuroimage. 2021 Nov 1;241:118386. doi: 10.1016/j.neuroimage.2021.118386. Epub 2021 Jul 17.
The reliability of scientific results critically depends on reproducible and transparent data processing. Cross-subject and cross-study comparability of imaging data in general, and magnetic resonance imaging (MRI) data in particular, is contingent on the quality of registration to a standard reference space. In small animal MRI this is not adequately provided by currently used processing workflows, which utilize high-level scripts optimized for human data, and adapt animal data to fit the scripts, rather than vice-versa. In this fully reproducible article we showcase a generic workflow optimized for the mouse brain, alongside a standard reference space suited to harmonize data between analysis and operation. We introduce four separate metrics for automated quality control (QC), and a visualization method to aid operator inspection. Benchmarking this workflow against common legacy practices reveals that it performs more consistently, better preserves variance across subjects while minimizing variance across sessions, and improves both volume and smoothness conservation RMSE approximately 2-fold. We propose this open source workflow and the QC metrics as a new standard for small animal MRI registration, ensuring workflow robustness, data comparability, and region assignment validity, all of which are indispensable prerequisites for the comparability of scientific results across experiments and centers.
科学结果的可靠性在很大程度上取决于可重复和透明的数据处理。一般来说,跨主题和跨研究的成像数据的可比较性,特别是磁共振成像(MRI)数据的可比较性,取决于与标准参考空间的配准质量。在小动物 MRI 中,目前使用的处理工作流程无法充分提供这一点,这些工作流程利用针对人类数据优化的高级脚本,并使动物数据适应脚本,而不是相反。在这篇完全可重复的文章中,我们展示了一个针对老鼠大脑优化的通用工作流程,以及一个标准的参考空间,用于协调分析和操作之间的数据。我们引入了四个用于自动质量控制(QC)的单独指标,以及一种辅助操作员检查的可视化方法。将此工作流程与常见的传统实践进行基准测试表明,它的性能更一致,在最小化会话之间的方差的同时更好地保留了主题之间的方差,并且大约将体积和平滑度保留 RMSE 提高了 2 倍。我们建议将此开源工作流程和 QC 指标作为小动物 MRI 注册的新标准,确保工作流程的稳健性、数据的可比较性和区域分配的有效性,所有这些都是跨实验和中心比较科学结果的可比性所必需的前提条件。