Suppr超能文献

一种与三阴性乳腺癌视觉报告指南相当的计算肿瘤浸润淋巴细胞评估方法。

A Computational Tumor-Infiltrating Lymphocyte Assessment Method Comparable with Visual Reporting Guidelines for Triple-Negative Breast Cancer.

机构信息

State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.

State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.

出版信息

EBioMedicine. 2021 Aug;70:103492. doi: 10.1016/j.ebiom.2021.103492. Epub 2021 Jul 16.

Abstract

BACKGROUND

Tumor-infiltrating lymphocytes (TILs) are clinically significant in triple-negative breast cancer (TNBC). Although a standardized methodology for visual TILs assessment (VTA) exists, it has several inherent limitations. We established a deep learning-based computational TIL assessment (CTA) method broadly following VTA guideline and compared it with VTA for TNBC to determine the prognostic value of the CTA and a reasonable CTA workflow for clinical practice.

METHODS

We trained three deep neural networks for nuclei segmentation, nuclei classification and necrosis classification to establish a CTA workflow. The automatic TIL (aTIL) score generated was compared with manual TIL (mTIL) scores provided by three pathologists in an Asian (n = 184) and a Caucasian (n = 117) TNBC cohort to evaluate scoring concordance and prognostic value.

FINDINGS

The intraclass correlations (ICCs) between aTILs and mTILs varied from 0.40 to 0.70 in two cohorts. Multivariate Cox proportional hazards analysis revealed that the aTIL score was associated with disease free survival (DFS) in both cohorts, as either a continuous [hazard ratio (HR)=0.96, 95% CI 0.94-0.99] or dichotomous variable (HR=0.29, 95% CI 0.12-0.72). A higher C-index was observed in a composite mTIL/aTIL three-tier stratification model than in the dichotomous model, using either mTILs or aTILs alone.

INTERPRETATION

The current study provides a useful tool for stromal TIL assessment and prognosis evaluation for patients with TNBC. A workflow integrating both VTA and CTA may aid pathologists in performing risk management and decision-making tasks.

FUNDING

National Natural Science Foundation of China, Guangdong Medical Research Foundation, Guangdong Natural Science Foundation.

摘要

背景

肿瘤浸润淋巴细胞(TILs)在三阴性乳腺癌(TNBC)中具有重要的临床意义。尽管存在用于视觉 TIL 评估(VTA)的标准化方法,但它具有几个固有的局限性。我们建立了一种基于深度学习的计算性 TIL 评估(CTA)方法,该方法广泛遵循 VTA 指南,并将其与 TNBC 的 VTA 进行比较,以确定 CTA 的预后价值和用于临床实践的合理 CTA 工作流程。

方法

我们训练了三个深度神经网络来进行核分割、核分类和坏死分类,以建立 CTA 工作流程。生成的自动 TIL(aTIL)评分与三位病理学家提供的手动 TIL(mTIL)评分在亚洲(n=184)和高加索(n=117)TNBC 队列中进行比较,以评估评分一致性和预后价值。

结果

两个队列中 aTILs 与 mTILs 之间的组内相关系数(ICC)在 0.40 到 0.70 之间变化。多变量 Cox 比例风险分析显示,aTIL 评分与两个队列的无病生存(DFS)相关,无论是连续变量(HR=0.96,95%CI 0.94-0.99)还是二分变量(HR=0.29,95%CI 0.12-0.72)。在使用 mTILs 或 aTILs 作为单一变量的情况下,在复合 mTIL/aTIL 三分层模型中观察到的 C 指数高于二分模型。

结论

本研究为 TNBC 患者的基质 TIL 评估和预后评估提供了一种有用的工具。整合 VTA 和 CTA 的工作流程可能有助于病理学家进行风险管理和决策任务。

资助

国家自然科学基金、广东省医学研究基金、广东省自然科学基金。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/245a/8318866/a8eb9a9a94f1/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验