文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

多辅助方法改善乳腺癌中基质肿瘤浸润淋巴细胞(sTILs)评估:多机构环形研究结果

Multi-assistant methods improve stromal tumor-infiltrating lymphocytes (sTILs) assessment in breast cancer: results of multi-institutional ring studies.

作者信息

Zhao M, Dong P, Li Z, Li J, Wu S, Xing H, Zhang P, Zhang J, Shen H, Yang H, Yang W, Han X, Liu Y

机构信息

Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei.

AI Lab, Tencent, Shenzhen, Guangdong, China.

出版信息

ESMO Open. 2025 May;10(5):105095. doi: 10.1016/j.esmoop.2025.105095. Epub 2025 May 14.


DOI:10.1016/j.esmoop.2025.105095
PMID:40373351
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12141058/
Abstract

BACKGROUND: Stromal tumor-infiltrating lymphocytes (sTILs) have significant prognostic value for breast cancer patients, but its accurate assessment can be very challenging. We comprehensively studied the pitfalls faced by pathologists with different levels of professional experience, and explored clinical applicability of reference cards (RCs)- and artificial intelligence (AI)-assisted methods in assessing sTILs. MATERIALS AND METHODS: Three rounds of ring studies (RSs) involving 12 pathologists from four hospitals were conducted. AI algorithms based on the field of view (FOV) and whole section were proposed to create RCs and to compute whole-slide image interpretations, respectively. Stromal regions identified and the associated sTIL scores by the AI method were provided to the pathologists as references. Fifty cases of surgical resections were used for interobserver concordance analysis in RS1. A total of 200 FOVs with challenge factors were assessed in RS2 for accuracy of the RC-assisted and AI-assisted methods, while 167 cases were used to validate their clinical performance in RS3. RESULTS: With the assistance of RCs, the intraclass correlation coefficient (ICC) in RS1 increased significantly to 0.834 [95% confidence interval (CI) 0.772-0.889]. The largest enhancement in ICC, from moderate (ICC: 0.592; 95% CI 0.499-0.677) to good (ICC: 0.808; 95% CI 0.746-0.857) was observed for heterogeneity. Accuracy evaluation showed significant grade improvement for heterogeneity and stromal factor FOVs among senior, intermediate, and junior groups. The ICC of heterogeneity and stromal factor analysis by the AI-assisted method achieved a level comparable to that of the senior group with RC assistance. The area under the receiver operating characteristic (ROC) curve, denoted as AUC, for AI-assisted sTIL scores in predicting pathological complete response after neoadjuvant therapy was 0.937, which was superior to visual assessment with an AUC of 0.775. CONCLUSION: RC- and AI-assisted technology can reduce the uncertainty of interpretation caused by heterogeneous distribution.

摘要

背景:基质肿瘤浸润淋巴细胞(sTILs)对乳腺癌患者具有重要的预后价值,但其准确评估极具挑战性。我们全面研究了不同专业经验水平的病理学家所面临的陷阱,并探讨了参考卡片(RCs)和人工智能(AI)辅助方法在评估sTILs中的临床适用性。 材料与方法:开展了三轮环式研究(RSs),涉及来自四家医院的12名病理学家。提出了基于视野(FOV)和全切片的人工智能算法,分别用于创建RCs和计算全切片图像解读结果。通过人工智能方法识别的基质区域及相关的sTIL评分被提供给病理学家作为参考。在RS1中,使用50例手术切除病例进行观察者间一致性分析。在RS2中,共评估了200个具有挑战因素的FOV,以评估RC辅助和AI辅助方法的准确性,而在RS3中,使用167例病例验证其临床性能。 结果:在RCs的辅助下,RS1中的组内相关系数(ICC)显著提高至0.834 [95%置信区间(CI)0.772 - 0.889]。对于异质性,ICC的最大提升最为明显,从中度(ICC:0.592;95% CI 0.499 - 0.677)提升至良好(ICC:0.808;95% CI 0.746 - 0.857)。准确性评估显示,在高级、中级和初级组中,异质性和基质因子FOV的分级有显著改善。通过AI辅助方法进行的异质性和基质因子分析的ICC达到了与RC辅助下高级组相当的水平。在预测新辅助治疗后病理完全缓解方面,AI辅助sTIL评分的受试者操作特征(ROC)曲线下面积(AUC)为0.937,优于视觉评估的AUC(0.775)。 结论:RC和AI辅助技术可降低由异质性分布导致的解读不确定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65ca/12141058/2899bed55bd4/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65ca/12141058/24013dda619f/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65ca/12141058/73f67763eb3d/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65ca/12141058/b9a2c3370b9a/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65ca/12141058/6810de2339bd/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65ca/12141058/2899bed55bd4/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65ca/12141058/24013dda619f/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65ca/12141058/73f67763eb3d/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65ca/12141058/b9a2c3370b9a/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65ca/12141058/6810de2339bd/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65ca/12141058/2899bed55bd4/gr5.jpg

相似文献

[1]
Multi-assistant methods improve stromal tumor-infiltrating lymphocytes (sTILs) assessment in breast cancer: results of multi-institutional ring studies.

ESMO Open. 2025-5

[2]
Reproducibility and predictive value of scoring stromal tumour infiltrating lymphocytes in triple-negative breast cancer: a multi-institutional study.

Breast Cancer Res Treat. 2018-5-17

[3]
Improving Ki67 assessment concordance by the use of an artificial intelligence-empowered microscope: a multi-institutional ring study.

Histopathology. 2021-10

[4]
The importance of stromal and intratumoral tumor lymphocyte infiltration for pathologic complete response in patients with locally advanced breast cancer.

J Cancer Res Ther. 2018

[5]
Can AI-assisted microscope facilitate breast HER2 interpretation? A multi-institutional ring study.

Virchows Arch. 2021-9

[6]
Interobserver Agreement Between Pathologists Assessing Tumor-Infiltrating Lymphocytes (TILs) in Breast Cancer Using Methodology Proposed by the International TILs Working Group.

Ann Surg Oncol. 2016-7

[7]
Artificial intelligence enhances whole-slide interpretation of PD-L1 CPS in triple-negative breast cancer: A multi-institutional ring study.

Histopathology. 2024-9

[8]
Evaluation of the Predictive and Prognostic Values of Stromal Tumor-Infiltrating Lymphocytes in HER2-Positive Breast Cancers treated with neoadjuvant chemotherapy.

Target Oncol. 2018-12

[9]
Evaluation of tumour infiltrating lymphocytes in luminal breast cancer using artificial intelligence.

Br J Cancer. 2023-11

[10]
The Role of Artificial Intelligence in Accurate Interpretation of HER2 Immunohistochemical Scores 0 and 1+ in Breast Cancer.

Mod Pathol. 2023-3

本文引用的文献

[1]
Artificial intelligence-based analysis of tumor-infiltrating lymphocyte spatial distribution for colorectal cancer prognosis.

Chin Med J (Engl). 2024-2-20

[2]
Tumor-Infiltrating Lymphocyte Recognition in Primary Melanoma by Deep Learning Convolutional Neural Network.

Am J Pathol. 2023-12

[3]
Tumor Infiltrating Lymphocytes across Breast Cancer Subtypes: Current Issues for Biomarker Assessment.

Cancers (Basel). 2023-1-26

[4]
Efficacy and safety of lifileucel, a one-time autologous tumor-infiltrating lymphocyte (TIL) cell therapy, in patients with advanced melanoma after progression on immune checkpoint inhibitors and targeted therapies: pooled analysis of consecutive cohorts of the C-144-01 study.

J Immunother Cancer. 2022-12

[5]
Prognostic Value of Stromal Tumor-Infiltrating Lymphocytes in Young, Node-Negative, Triple-Negative Breast Cancer Patients Who Did Not Receive (neo)Adjuvant Systemic Therapy.

J Clin Oncol. 2022-7-20

[6]
Artificial intelligence applied to breast pathology.

Virchows Arch. 2022-1

[7]
A Computational Tumor-Infiltrating Lymphocyte Assessment Method Comparable with Visual Reporting Guidelines for Triple-Negative Breast Cancer.

EBioMedicine. 2021-8

[8]
Interobserver variability in the assessment of stromal tumor-infiltrating lymphocytes (sTILs) in triple-negative invasive breast carcinoma influences the association with pathological complete response: the IVITA study.

Mod Pathol. 2021-12

[9]
Immune Infiltrates in Breast Cancer: Recent Updates and Clinical Implications.

Cells. 2021-1-23

[10]
NuClick: A deep learning framework for interactive segmentation of microscopic images.

Med Image Anal. 2020-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索