Neurological Institute (Edinger Institute), University Hospital, Frankfurt am Main, Germany.
German Cancer Consortium (DKTK) Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany.
J Immunother Cancer. 2021 Jul;9(7). doi: 10.1136/jitc-2020-002226.
Therapies based on targeting immune checkpoints have revolutionized the treatment of metastatic melanoma in recent years. Still, biomarkers predicting long-term therapy responses are lacking.
A novel approach of reference-free deconvolution of large-scale DNA methylation data enabled us to develop a machine learning classifier based on CpG sites, specific for latent methylation components (LMC), that allowed for patient allocation to prognostic clusters. DNA methylation data were processed using reference-free analyses (MeDeCom) and reference-based computational tumor deconvolution (MethylCIBERSORT, LUMP).
We provide evidence that DNA methylation signatures of tumor tissue from cutaneous metastases are predictive for therapy response to immune checkpoint inhibition in patients with stage IV metastatic melanoma.
These results demonstrate that LMC-based segregation of large-scale DNA methylation data is a promising tool for classifier development and treatment response estimation in cancer patients under targeted immunotherapy.
近年来,基于免疫检查点靶向治疗的方法彻底改变了转移性黑色素瘤的治疗方式。然而,仍缺乏预测长期治疗反应的生物标志物。
一种新的无参考大规模 DNA 甲基化数据去卷积方法使我们能够开发一种基于 CpG 位点的机器学习分类器,该分类器针对潜伏甲基化成分(LMC),允许患者分配到预后聚类中。使用无参考分析(MeDeCom)和基于参考的计算肿瘤去卷积(MethylCIBERSORT,LUM)对 DNA 甲基化数据进行处理。
我们提供的证据表明,皮肤转移灶的肿瘤组织 DNA 甲基化特征可预测 IV 期转移性黑色素瘤患者对免疫检查点抑制治疗的反应。
这些结果表明,基于 LMC 的大规模 DNA 甲基化数据的分离是开发分类器和估计靶向免疫治疗癌症患者治疗反应的有前途的工具。