Delaporte-Mathurin Rémi, Ialovega Mykola, Hodille Etienne A, Mougenot Jonathan, Charles Yann, Bernard Elodie, Martin Céline, Grisolia Christian
CEA, IRFM, 13108, Saint-Paul-lez-Durance, France.
Laboratoire des Sciences des Procédés et des Matériaux, LSPM, CNRS, Université Sorbonne Paris Nord, UPR 3407, -93430, Villetaneuse, France.
Sci Rep. 2021 Jul 19;11(1):14681. doi: 10.1038/s41598-021-93542-9.
Helium diffusion, clustering and bubble nucleation and growth is modelled using the finite element method. The existing model from Faney et al. (Model Simul Mater Sci Eng 22:065010, 2018; Nucl Fusion 55:013014, 2015) is implemented with FEniCS and simplified in order to greatly reduce the number of equations. A parametric study is performed to investigate the influence of exposure conditions on helium inventory, bubbles density and size. Temperature is varied from 120 K to 1200 K and the implanted flux of 100 eV He is varied from [Formula: see text] to [Formula: see text]. Bubble mean size increases as a power law of time whereas the bubble density reaches a maximum. The maximum He content in bubbles was approximately [Formula: see text] He at [Formula: see text]. After 1 h of exposure, the helium inventory varies from [Formula: see text] at low flux and high temperature to [Formula: see text] at high flux and low temperature. The bubbles inventory varies from [Formula: see text] bubbles m[Formula: see text] to [Formula: see text] bubbles m[Formula: see text]. Comparison with experimental measurements is performed. The bubble density simulated by the model is in quantitative agreement with experiments.
使用有限元方法对氦的扩散、聚集以及气泡的形核与生长进行建模。采用FEniCS实现了Faney等人的现有模型(《材料科学与工程模型模拟》22:065010, 2018;《核聚变》55:013014, 2015),并对其进行了简化以大幅减少方程数量。进行了参数研究以考察暴露条件对氦存量、气泡密度和尺寸的影响。温度在120 K至1200 K之间变化,100 eV氦的注入通量在[公式:见原文]至[公式:见原文]之间变化。气泡平均尺寸随时间呈幂律增长,而气泡密度达到最大值。在[公式:见原文]时,气泡中的最大氦含量约为[公式:见原文]He。暴露1小时后,氦存量在低通量和高温下为[公式:见原文],在高通量和低温下为[公式:见原文]。气泡存量在[公式:见原文]个气泡/m[公式:见原文]至[公式:见原文]个气泡/m[公式:见原文]之间变化。与实验测量结果进行了比较。该模型模拟的气泡密度与实验结果在数量上相符。