Suppr超能文献

ChronoRoot:通过深度分割网络进行高通量表型分析揭示了植物根系结构的新的时间参数。

ChronoRoot: High-throughput phenotyping by deep segmentation networks reveals novel temporal parameters of plant root system architecture.

机构信息

Research Institute for Signals, Systems and Computational Intelligence (sinc(i)), CONICET, FICH, Universidad Nacional del Litoral, Ciudad Universitaria UNL, Santa Fe, Argentina.

Instituto de Agrobiotecnología del Litoral (IAL), CONICET, FBCB, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, Santa Fe, Argentina.

出版信息

Gigascience. 2021 Jul 20;10(7). doi: 10.1093/gigascience/giab052.

Abstract

BACKGROUND

Deep learning methods have outperformed previous techniques in most computer vision tasks, including image-based plant phenotyping. However, massive data collection of root traits and the development of associated artificial intelligence approaches have been hampered by the inaccessibility of the rhizosphere. Here we present ChronoRoot, a system that combines 3D-printed open-hardware with deep segmentation networks for high temporal resolution phenotyping of plant roots in agarized medium.

RESULTS

We developed a novel deep learning-based root extraction method that leverages the latest advances in convolutional neural networks for image segmentation and incorporates temporal consistency into the root system architecture reconstruction process. Automatic extraction of phenotypic parameters from sequences of images allowed a comprehensive characterization of the root system growth dynamics. Furthermore, novel time-associated parameters emerged from the analysis of spectral features derived from temporal signals.

CONCLUSIONS

Our work shows that the combination of machine intelligence methods and a 3D-printed device expands the possibilities of root high-throughput phenotyping for genetics and natural variation studies, as well as the screening of clock-related mutants, revealing novel root traits.

摘要

背景

深度学习方法在大多数计算机视觉任务中都优于以前的技术,包括基于图像的植物表型分析。然而,根系的不可接近性阻碍了根性状的大量数据收集和相关人工智能方法的发展。在这里,我们展示了 ChronoRoot,这是一个结合了 3D 打印开源硬件和深度分割网络的系统,用于在琼脂培养基中对植物根系进行高时间分辨率表型分析。

结果

我们开发了一种新的基于深度学习的根系提取方法,利用卷积神经网络在图像分割方面的最新进展,并将时间一致性纳入根系系统结构重建过程中。从图像序列中自动提取表型参数允许对根系生长动态进行全面描述。此外,从时间信号衍生的光谱特征分析中出现了新的与时间相关的参数。

结论

我们的工作表明,机器智能方法和 3D 打印设备的结合扩展了根系高通量表型分析的可能性,可用于遗传学和自然变异研究,以及与时钟相关的突变体的筛选,揭示了新的根系特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27da/8290196/d87e49ff2663/giab052fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验