From the Department of Chemistry, Oregon State University, Corvallis, Oregon 97331.
From the Department of Chemistry, Oregon State University, Corvallis, Oregon 97331
J Biol Chem. 2017 Dec 22;292(51):21102-21116. doi: 10.1074/jbc.M116.774836. Epub 2017 Oct 26.
Mensacarcin is a highly oxygenated polyketide that was first isolated from soil-dwelling bacteria. It exhibits potent cytostatic properties (mean of 50% growth inhibition = 0.2 μm) in almost all cell lines of the National Cancer Institute (NCI)-60 cell line screen and relatively selective cytotoxicity against melanoma cells. Moreover, its low COMPARE correlations with known standard antitumor agents indicate a unique mechanism of action. Effective therapies for managing melanoma are limited, so we sought to investigate mensacarcin's unique cytostatic and cytotoxic effects and its mode of action. By assessing morphological and biochemical features, we demonstrated that mensacarcin activates caspase-3/7-dependent apoptotic pathways and induces cell death in melanoma cells. Upon mensacarcin exposure, SK-Mel-28 and SK-Mel-5 melanoma cells, which have the BRAF mutation associated with drug resistance, showed characteristic chromatin condensation as well as distinct poly(ADP-ribose)polymerase-1 cleavage. Flow cytometry identified a large population of apoptotic melanoma cells, and single-cell electrophoresis indicated that mensacarcin causes genetic instability, a hallmark of early apoptosis. To visualize mensacarcin's subcellular localization, we synthesized a fluorescent mensacarcin probe that retained activity. The natural product probe was localized to mitochondria within 20 min of treatment. Live-cell bioenergetic flux analysis confirmed that mensacarcin disturbs energy production and mitochondrial function rapidly. The subcellular localization of the fluorescently labeled mensacarcin together with its unusual metabolic effects in melanoma cells provide evidence that mensacarcin targets mitochondria. Mensacarcin's unique mode of action suggests that it may be a useful probe for examining energy metabolism, particularly in BRAF-mutant melanoma, and represent a promising lead for the development of new anticancer drugs.
美纳卡林是一种高度氧化的聚酮化合物,最初从土壤中分离出来的细菌。它在国立癌症研究所(NCI)-60 细胞系筛选的几乎所有细胞系中都表现出强大的细胞生长抑制作用(半数抑制浓度=0.2μm),并且对黑色素瘤细胞具有相对选择性的细胞毒性。此外,它与已知标准抗肿瘤药物的低 COMPARE 相关性表明其具有独特的作用机制。用于治疗黑色素瘤的有效疗法有限,因此我们试图研究美纳卡林的独特细胞生长抑制和细胞毒性作用及其作用机制。通过评估形态和生化特征,我们证明美纳卡林激活了 caspase-3/7 依赖性的凋亡途径,并诱导黑色素瘤细胞死亡。在美纳卡林暴露下,具有与耐药相关的 BRAF 突变的 SK-Mel-28 和 SK-Mel-5 黑色素瘤细胞显示出特征性的染色质浓缩以及明显的多聚(ADP-核糖)聚合酶-1 切割。流式细胞术鉴定出大量凋亡的黑色素瘤细胞,单细胞电泳表明美纳卡林引起遗传不稳定性,这是早期凋亡的标志。为了可视化美纳卡林的亚细胞定位,我们合成了保留活性的荧光美纳卡林探针。该天然产物探针在治疗后 20 分钟内定位于线粒体。活细胞生物能通量分析证实美纳卡林迅速扰乱能量产生和线粒体功能。荧光标记的美纳卡林的亚细胞定位及其在黑色素瘤细胞中的异常代谢作用为美纳卡林靶向线粒体提供了证据。美纳卡林独特的作用机制表明,它可能是研究能量代谢的有用探针,特别是在 BRAF 突变的黑色素瘤中,并为开发新的抗癌药物提供了有前途的先导。