Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA.
J Cell Physiol. 2022 Jan;237(1):660-674. doi: 10.1002/jcp.30535. Epub 2021 Jul 20.
Arginine vasopressin (AVP) is a hormone exerting vasoconstrictive and antidiuretic action in the periphery and serves as a neuromodulator in the brain. Although the hippocampus receives vasopressinergic innervation and AVP has been shown to facilitate the excitability of CA1 pyramidal neurons, the involved ionic and signaling mechanisms have not been determined. Here we found that AVP excited CA1 pyramidal neurons by activation of V receptors. Functions of G proteins and phospholipase Cβ (PLCβ) were required for AVP-elicited excitation of CA1 pyramidal neurons, whereas intracellular Ca release and protein kinase C were unnecessary. PLCβ-mediated depletion of phosphatidylinositol 4,5-bisphosphate (PIP ) was required for AVP-elicited excitation of CA1 pyramidal neurons. AVP augmented the input resistance and increased the time constants of CA1 pyramidal neurons. AVP induced an inward current in K -containing intracellular solution, whereas no inward currents were observed with Cs -containing intracellular solution. AVP-sensitive currents showed inward rectification with a reversal potential close to the K reversal potential, suggesting the involvement of inwardly rectifying K channels. AVP-induced currents were sensitive to the micromolar concentration of Ba and tertiapin-Q, whereas application of ML 133, a selective Kir2 channel blocker had no effects, suggesting that AVP excited CA1 pyramidal neurons by depressing G protein-gated inwardly rectifying K channels. Activation of V receptors in the CA1 region facilitated glutamatergic transmission onto subicular pyramidal neurons, suggesting that AVP modulates network activity in the brain. Our results may provide one of the cellular and molecular mechanisms to explain the in vivo physiological functions of AVP.
精氨酸加压素(AVP)是一种在外周发挥血管收缩和抗利尿作用的激素,也是大脑中的神经调质。虽然海马区接收加压素能神经支配,并且已经证明 AVP 有助于 CA1 锥体神经元的兴奋性,但涉及的离子和信号机制尚未确定。在这里,我们发现 AVP 通过激活 V 受体来兴奋 CA1 锥体神经元。G 蛋白和磷脂酶 Cβ(PLCβ)的功能对于 AVP 诱导的 CA1 锥体神经元兴奋是必需的,而细胞内 Ca 释放和蛋白激酶 C 则是不必要的。PLCβ 介导的磷脂酰肌醇 4,5-二磷酸(PIP )耗竭是 AVP 诱导的 CA1 锥体神经元兴奋所必需的。AVP 增加了 CA1 锥体神经元的输入电阻并增加了它们的时间常数。AVP 在含有 K 的细胞内溶液中诱导内向电流,而在含有 Cs 的细胞内溶液中则没有观察到内向电流。AVP 敏感电流表现出内向整流,反转电位接近 K 的反转电位,表明涉及内向整流 K 通道。AVP 诱导的电流对微摩尔浓度的 Ba 和 tertiapin-Q 敏感,而选择性 Kir2 通道阻滞剂 ML 133 的应用则没有影响,这表明 AVP 通过抑制 G 蛋白门控内向整流 K 通道来兴奋 CA1 锥体神经元。CA1 区 V 受体的激活促进了谷氨酸能传入到下托锥体神经元,这表明 AVP 调节了大脑中的网络活动。我们的结果可能为解释体内 AVP 的生理功能提供了一种细胞和分子机制。