Department of Chemistry, University of Toronto, Toronto, Ontario, Canada.
Department of Environmental Toxicology, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China.
Environ Health Perspect. 2021 Jul;129(7):77004. doi: 10.1289/EHP7169. Epub 2021 Jul 21.
Thousands of per- and polyfluoroalkyl substances (PFAS) with diverse structures have been detected in the ambient environment. Apart from a few well-studied PFAS, the structure-related toxicokinetics of a broader set of PFAS remain unclear.
To understand the toxicokinetics of PFAS, we attempted to characterize the metabolism pathways of 74 structurally diverse PFAS samples from the U.S. Environmental Protection Agency's PFAS screening library.
Using the early life stages of zebrafish () as a model, we determined the bioconcentration factors and phenotypic toxicities of 74 PFAS. Then, we applied high-resolution mass spectrometry-based nontargeted analysis to identify metabolites of PFAS in zebrafish larvae after 5 d of exposure by incorporating retention time and mass spectra. enzymatic activity experiments with human recombinant liver carboxylesterase (CES1) were employed to validate the structure-related hydrolysis of 11 selected PFAS.
Our findings identified five structural categories of PFAS prone to metabolism. The metabolism pathways of PFAS were highly related to their structures as exemplified by fluorotelomer alcohols that the predominance of or taurine conjugation pathways were primarily determined by the number of hydrocarbons. Hydrolysis was identified as a major metabolism pathway for diverse PFAS, and perfluoroalkyl carboxamides showed the highest hydrolysis rates, followed by carboxyesters and sulfonamides. The hydrolysis of PFAS was verified with recombinant CES1, with strong substrate preferences toward perfluoroalkyl carboxamides.
We suggest that the roadmap of the structure-related metabolism pathways of PFAS established in this study would provide a starting point to inform the potential health risks of other PFAS. https://doi.org/10.1289/EHP7169.
在环境中已检测到数千种具有不同结构的全氟和多氟烷基物质(PFAS)。除了少数研究充分的 PFAS 外,更广泛的 PFAS 的结构相关毒代动力学仍不清楚。
为了了解 PFAS 的毒代动力学,我们试图描述美国环境保护署 PFAS 筛选库中 74 种结构多样的 PFAS 的代谢途径。
我们以斑马鱼()的早期生命阶段为模型,测定了 74 种 PFAS 的生物浓缩因子和表型毒性。然后,我们应用基于高分辨率质谱的非靶向分析,通过保留时间和质谱来鉴定斑马鱼幼虫暴露 5 天后 PFAS 的代谢物。我们用人重组肝羧酸酯酶(CES1)进行了酶活性实验,以验证 11 种选定的 PFAS 的结构相关水解。
我们的研究结果确定了五种易发生代谢的 PFAS 结构类别。PFAS 的代谢途径与其结构高度相关,例如氟调聚物醇,其或牛磺酸缀合途径的优势主要取决于烃的数量。水解被确定为多种 PFAS 的主要代谢途径,全氟烷基酰胺表现出最高的水解率,其次是羧酸酯和磺酰胺。PFAS 的水解通过重组 CES1 得到验证,对全氟烷基酰胺表现出很强的底物偏好。
我们建议,本研究中建立的 PFAS 结构相关代谢途径的路线图将为告知其他 PFAS 的潜在健康风险提供起点。https://doi.org/10.1289/EHP7169.