Suppr超能文献

门诊发热诊所中新冠病毒病的预测因素

Predictors of COVID-19 in an outpatient fever clinic.

作者信息

Trübner Frank, Steigert Lisa, Echterdiek Fabian, Jung Norma, Schmidt-Hellerau Kirsten, Zoller Wolfram G, Frick Julia-Stefanie, Feng You-Shan, Paul Gregor

机构信息

Department of Gastroenterology, Hepatology, Pneumology and Infectious diseases, Klinikum Stuttgart, Stuttgart, Germany.

Department of Nephrology, Klinikum Stuttgart, Stuttgart, Germany.

出版信息

PLoS One. 2021 Jul 21;16(7):e0254990. doi: 10.1371/journal.pone.0254990. eCollection 2021.

Abstract

BACKGROUND

The objective of this study was to identify clinical risk factors for COVID-19 in a German outpatient fever clinic that allow distinction of SARS-CoV-2 infected patients from other patients with flu-like symptoms.

METHODS

This is a retrospective, single-centre cohort study. Patients were included visiting the fever clinic from 4th of April 2020 to 15th of May 2020. Symptoms, comorbidities, and socio-demographic factors were recorded in a standardized fashion. Multivariate logistic regression was used to identify risk factors of COVID-19, on the bases of those a model discrimination was assessed using area under the receiver operation curves (AUROC).

RESULTS

The final analysis included 930 patients, of which 74 (8%) had COVID-19. Anosmia (OR 10.71; CI 6.07-18.9) and ageusia (OR 9.3; CI 5.36-16.12) were strongly associated with COVID-19. High-risk exposure (OR 12.20; CI 6.80-21.90), especially in the same household (OR 4.14; CI 1.28-13.33), was also correlated; the more household members, especially with flu-like symptoms, the higher the risk of COVID-19. Working in an essential workplace was also associated with COVID-19 (OR 2.35; CI 1.40-3.96), whereas smoking was inversely correlated (OR 0.19; CI 0.08-0.44). A model that considered risk factors like anosmia, ageusia, concomitant of symptomatic household members and smoking well discriminated COVID-19 patients from other patients with flu-like symptoms (AUROC 0.84).

CONCLUSIONS

We report a set of four readily available clinical parameters that allow the identification of high-risk individuals of COVID-19. Our study will not replace molecular testing but will help guide containment efforts while waiting for test results.

摘要

背景

本研究的目的是在德国一家门诊发热诊所确定新冠肺炎的临床风险因素,以便将感染严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的患者与其他有流感样症状的患者区分开来。

方法

这是一项回顾性单中心队列研究。纳入了2020年4月4日至2020年5月15日到发热诊所就诊的患者。以标准化方式记录症状、合并症和社会人口学因素。使用多因素逻辑回归来确定新冠肺炎的风险因素,并在此基础上使用受试者工作特征曲线下面积(AUROC)评估模型的辨别力。

结果

最终分析纳入了930例患者,其中74例(8%)患有新冠肺炎。嗅觉丧失(比值比[OR]10.71;可信区间[CI]6.07 - 18.9)和味觉丧失(OR 9.3;CI 5.36 - 16.12)与新冠肺炎密切相关。高风险暴露(OR 12.20;CI 6.80 - 21.90),尤其是在同一家庭中(OR 4.14;CI 1.28 - 13.33)也有关联;家庭成员越多,尤其是有流感样症状的,感染新冠肺炎的风险越高。在必要工作场所工作也与新冠肺炎有关(OR 2.35;CI 1.40 - 3.96),而吸烟则呈负相关(OR 0.19;CI 0.08 - 0.44)。一个考虑了嗅觉丧失、味觉丧失、有症状家庭成员的存在和吸烟等风险因素的模型能够很好地将新冠肺炎患者与其他有流感样症状的患者区分开来(AUROC 0.84)。

结论

我们报告了一组四个易于获得的临床参数,可用于识别新冠肺炎的高危个体。我们的研究不会取代分子检测,但在等待检测结果期间将有助于指导防控工作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec4/8294531/aba13bbabc82/pone.0254990.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验