Boudet J F, Lintuvuori J, Lacouture C, Barois T, Deblais A, Xie K, Cassagnere S, Tregon B, Brückner D B, Baret J C, Kellay H
Univ. Bordeaux, CNRS, LOMA, UMR 5798, F-33400 Talence, France.
Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, 1098XH Amsterdam, Netherlands.
Sci Robot. 2021 Jul 21;6(56). doi: 10.1126/scirobotics.abd0272.
A swarm of simple active particles confined in a flexible scaffold is a promising system to make mobile and deformable superstructures. These soft structures can perform tasks that are difficult to carry out for monolithic robots because they can infiltrate narrow spaces, smaller than their size, and move around obstacles. To achieve such tasks, the origin of the forces the superstructures develop, how they can be guided, and the effects of external environment, especially geometry and the presence of obstacles, need to be understood. Here, we report measurements of the forces developed by such superstructures, enclosing a number of mindless active rod-like robots, as well as the forces exerted by these structures to achieve a simple function, crossing a constriction. We relate these forces to the self-organization of the individual entities. Furthermore, and based on a physical understanding of what controls the mobility of these superstructures and the role of geometry in such a process, we devise a simple strategy where the environment can be designed to bias the mobility of the superstructure, giving rise to directional motion. Simple tasks-such as pulling a load, moving through an obstacle course, or cleaning up an arena-are demonstrated. Rudimentary control of the superstructures using light is also proposed. The results are of relevance to the making of robust flexible superstructures with nontrivial space exploration properties out of a swarm of simpler and cheaper robots.
一群受限在柔性支架中的简单活性粒子是构建可移动且可变形超结构的一个很有前景的系统。这些软结构能够执行整体式机器人难以完成的任务,因为它们可以渗透到比自身尺寸小的狭窄空间,并绕过障碍物移动。为了实现此类任务,需要了解超结构所产生力的来源、如何对其进行引导以及外部环境的影响,尤其是几何形状和障碍物的存在。在此,我们报告了对此类超结构所产生力的测量,这些超结构包含多个无智能的活性棒状机器人,以及这些结构为实现一个简单功能(即穿过一个狭窄通道)所施加的力。我们将这些力与单个实体的自组织联系起来。此外,基于对控制这些超结构移动性的因素以及几何形状在此过程中所起作用的物理理解,我们设计了一种简单策略,通过设计环境来使超结构的移动产生偏向,从而实现定向运动。展示了诸如拉动负载、穿越障碍赛道或清理场地等简单任务。还提出了利用光对超结构进行初步控制的方法。这些结果对于用一群更简单、更便宜的机器人制造具有非凡空间探索特性的坚固柔性超结构具有重要意义。