Sanjay Sooraj, Ganapathi Kolla Lakshmi, Varrla Eswaraiah, Bhat Navakanta
Centre for Nano Science and Engineering, Indian Institute of Science, Bengaluru - 560012, India.
Department of Physics, 2D Materials Research and Innovation-group, Quantum Centers in Diamond and Emergent Materials (QuCenDiEM)-group, Indian Institute of Technology Madras, Chennai - 600036, India.
Nanotechnology. 2021 Aug 6;32(43). doi: 10.1088/1361-6528/ac1717.
Ultra-thin channel materials with excellent tunability of their electronic properties are necessary for the scaling of electronic devices. Two-dimensional materials such as transition metal dichalcogenides (TMDs) are ideal candidates for this due to their layered nature and great electrostatic control. Ternary alloys of these TMDs show composition-dependent electronic structure, promising excellent tunability of their properties. Here, we systematically compare molybdenum sulphoselenide (MoSSe) alloys, MoSSeand MoSSe. We observe variations in strain and carrier concentration with their composition. Using them, we demonstrate n-channel field-effect transistors (FETs) with SiOand high-HfOas gate dielectrics, and show tunability in threshold voltage, subthreshold slope (SS), drain current, and mobility. MoSSeshows better promise for low-power FETs with a minimum SS of 70 mV dec, whereas MoSSe, with its higher mobility, is suitable for faster operations. Using HfOas gate dielectric, there is an order of magnitude reduction in interface traps and 2× improvement in mobility and drain current, compared to SiO. In contrast to MoS, the FETs on HfOalso display enhancement-mode operation, making them better suited for CMOS applications.
具有优异电子特性可调性的超薄沟道材料对于电子器件的尺寸缩小至关重要。诸如过渡金属二硫属化物(TMDs)之类的二维材料由于其层状性质和强大的静电控制能力,是实现这一目标的理想候选材料。这些TMDs的三元合金表现出与成分相关的电子结构,有望实现其性能的优异可调性。在此,我们系统地比较了硫硒化钼(MoSSe)合金MoSSe和MoSSe。我们观察到它们的应变和载流子浓度随成分的变化。利用这些变化,我们展示了以SiO和高HfO作为栅极电介质的n沟道场效应晶体管(FET),并展示了阈值电压、亚阈值斜率(SS)、漏极电流和迁移率的可调性。MoSS对于最低SS为70 mV/dec的低功耗FET表现出更好的前景,而MoSSe由于其较高的迁移率,适合于更快的操作。与SiO相比,使用HfO作为栅极电介质时,界面陷阱减少了一个数量级,迁移率和漏极电流提高了2倍。与MoS不同,基于HfO的FET还表现出增强模式操作,使其更适合CMOS应用。