Hsu Kuang-Jung, Villalobos Luis Francisco, Huang Shiqi, Chi Heng-Yu, Dakhchoune Mostapha, Lee Wan-Chi, He Guangwei, Mensi Mounir, Agrawal Kumar Varoon
Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Switzerland.
Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, Rue de l'Industrie 17, CH-1951 Sion, Switzerland.
ACS Nano. 2021 Aug 24;15(8):13230-13239. doi: 10.1021/acsnano.1c02927. Epub 2021 Jul 28.
Predictable and tunable etching of angstrom-scale nanopores in single-layer graphene (SLG) can allow one to realize high-performance gas separation even from similar-sized molecules. We advance toward this goal by developing two etching regimes for SLG where the incorporation of angstrom-scale vacancy defects can be controlled. We screen several exposure profiles for the etchant, controlled by a multipulse millisecond treatment, using a mathematical model predicting the nucleation and pore expansion rates. The screened profiles yield a narrow pore-size-distribution (PSD) with a majority of defects smaller than missing 16 carbon atoms, suitable for CO/N separation, attributing to the reduced pore expansion rate at a high pore density. Resulting nanoporous SLG (N-SLG) membranes yield attractive CO permeance of 4400 ± 2070 GPU and CO/N selectivity of 33.4 ± 7.9. In the second etching regime, by limiting the supply of the etchant, the nanopores are allowed to expand while suppressing the nucleation events. Extremely attractive carbon capture performance marked with CO permeance of 8730 GPU, and CO/N selectivity of 33.4 is obtained when CO-selective polymeric chains are functionalized on the expanded nanopores. We show that the etching strategy is uniform and scalable by successfully fabricating high-performance centimeter-scale membrane.
在单层石墨烯(SLG)中实现可预测且可调谐的埃级纳米孔蚀刻,能够使人们甚至从尺寸相近的分子中实现高性能气体分离。我们朝着这个目标前进,通过开发两种用于SLG的蚀刻方式,其中埃级空位缺陷的引入可以得到控制。我们使用一个预测成核和孔扩张速率的数学模型,筛选了几种由多脉冲毫秒处理控制的蚀刻剂曝光曲线。筛选出的曲线产生了窄的孔径分布(PSD),大多数缺陷小于缺失16个碳原子,适用于CO/N分离,这归因于在高孔密度下孔扩张速率的降低。由此产生的纳米多孔SLG(N-SLG)膜具有吸引人的4400±2070 GPU的CO渗透率和33.4±7.9的CO/N选择性。在第二种蚀刻方式中,通过限制蚀刻剂的供应,纳米孔在抑制成核事件的同时得以扩张。当在扩张的纳米孔上对CO选择性聚合物链进行功能化时,可获得极具吸引力的碳捕获性能,其CO渗透率为8730 GPU,CO/N选择性为33.4。我们通过成功制备高性能厘米级膜证明了蚀刻策略是均匀且可扩展的。