Rezaei Mojtaba, Villalobos Luis Francisco, Hsu Kuang-Jung, Agrawal Kumar Varoon
Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), 1950, Sion, Switzerland.
Angew Chem Int Ed Engl. 2022 Apr 25;61(18):e202200321. doi: 10.1002/anie.202200321. Epub 2022 Mar 16.
A controlled manipulation of graphene edges and vacancies is desired for molecular separation, sensing and electronics applications. Unfortunately, available etching methods always lead to vacancy nucleation making it challenging to control etching. Herein, we report CO -led controlled etching down to 2-3 Å per minute while completely avoiding vacancy nucleation. This makes CO a unique etchant for decoupling pore nucleation and expansion. We show that CO expands the steric-hindrance-free edges with an activation energy of 2.71 eV, corresponding to the energy barrier for the dissociative chemisorption of CO . We demonstrate the presence of an additional configurational energy barrier for nanometer-sized vacancies resulting in a significantly slower rate of expansion. Finally, CO etching is applied to map the location of the intrinsic vacancies in the polycrystalline graphene film where we show that the intrinsic vacancy defects manifest mainly as grain boundary defects where intragrain defects from oxidative etching constitute a minor population.
对于分子分离、传感和电子应用而言,需要对石墨烯边缘和空位进行可控操纵。不幸的是,现有的蚀刻方法总是会导致空位成核,使得控制蚀刻具有挑战性。在此,我们报告了以一氧化碳为主导的可控蚀刻,速率低至每分钟2 - 3埃,同时完全避免了空位成核。这使得一氧化碳成为一种独特的蚀刻剂,可用于解耦孔隙成核和扩展。我们表明,一氧化碳以2.71电子伏特的活化能扩展了无空间位阻的边缘,这对应于一氧化碳解离化学吸附的能垒。我们证明了纳米级空位存在额外的构型能垒,导致扩展速率显著减慢。最后,将一氧化碳蚀刻应用于绘制多晶石墨烯薄膜中固有空位的位置,我们发现固有空位缺陷主要表现为晶界缺陷,而氧化蚀刻产生的晶粒内缺陷占比很小。