Suppr超能文献

肿瘤骨微环境中的代谢。

Metabolism in the Tumour-Bone Microenvironment.

机构信息

Nuffield Dept. of Surgical Sciences, University of Oxford, Oxford, UK.

Nuffield Dept. of Orthopaedics, Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford, UK.

出版信息

Curr Osteoporos Rep. 2021 Oct;19(5):494-499. doi: 10.1007/s11914-021-00695-7. Epub 2021 Jul 28.

Abstract

PURPOSE OF REVIEW

For solid tumours such as breast and prostate cancer, and haematological malignancies such as myeloma, bone represents a supportive home, where the cellular crosstalk is known to underlie both tumour growth and survival, and the development of the associated bone disease. The importance of metabolic reprogramming is becoming increasingly recognised, particularly within cancer biology, enabling tumours to adapt to changing environments and pressures. This review will discuss our current understanding of metabolic requirements and adaptations within the tumour-bone microenvironment.

RECENT FINDINGS

The bone provides a unique metabolic microenvironment, home to highly energy-intensive processes such as bone resorption and bone formation, both of which are dysregulated in the presence of cancer. Approaches such as metabolomics demonstrate metabolic plasticity in patients with advanced disease. Metabolic crosstalk between tumour cells and surrounding stroma supports disease pathogenesis. There is increasing evidence for a key role for metabolic reprogramming within the tumour-bone microenvironment to drive disease progression. As such, understanding these metabolic adaptations should reveal new therapeutic targets and approaches.

摘要

目的综述

对于乳腺癌和前列腺癌等实体瘤,以及骨髓瘤等血液系统恶性肿瘤,骨骼是一个支持性的家,细胞串扰已知是肿瘤生长和存活以及相关骨骼疾病发展的基础。代谢重编程的重要性日益得到认识,特别是在癌症生物学中,使肿瘤能够适应不断变化的环境和压力。这篇综述将讨论我们目前对肿瘤-骨骼微环境中代谢需求和适应的理解。

最近的发现

骨骼提供了一个独特的代谢微环境,是高能量密集型过程的所在地,如骨吸收和骨形成,在癌症存在的情况下,这两种过程都失调了。代谢组学等方法在晚期疾病患者中显示出代谢可塑性。肿瘤细胞和周围基质之间的代谢串扰支持疾病发病机制。越来越多的证据表明,代谢重编程在肿瘤-骨骼微环境中对于驱动疾病进展起着关键作用。因此,了解这些代谢适应应该揭示新的治疗靶点和方法。

相似文献

1
Metabolism in the Tumour-Bone Microenvironment.
Curr Osteoporos Rep. 2021 Oct;19(5):494-499. doi: 10.1007/s11914-021-00695-7. Epub 2021 Jul 28.
2
Metabolic crosstalk in the breast cancer microenvironment.
Eur J Cancer. 2019 Nov;121:154-171. doi: 10.1016/j.ejca.2019.09.002. Epub 2019 Sep 30.
3
Tumour dormancy in inflammatory microenvironment: A promising therapeutic strategy for cancer-related bone metastasis.
Cell Mol Life Sci. 2020 Dec;77(24):5149-5169. doi: 10.1007/s00018-020-03572-1. Epub 2020 Jun 16.
4
Metabolic reprogramming: the emerging concept and associated therapeutic strategies.
J Exp Clin Cancer Res. 2015 Oct 6;34:111. doi: 10.1186/s13046-015-0221-y.
5
Novel approaches to target the microenvironment of bone metastasis.
Nat Rev Clin Oncol. 2021 Aug;18(8):488-505. doi: 10.1038/s41571-021-00499-9. Epub 2021 Apr 19.
6
Bone marrow niches in the regulation of bone metastasis.
Br J Cancer. 2021 Jun;124(12):1912-1920. doi: 10.1038/s41416-021-01329-6. Epub 2021 Mar 23.
7
Cross Talk Between Macrophages and Cancer Cells in the Bone Metastatic Environment.
Front Endocrinol (Lausanne). 2021 Nov 3;12:763846. doi: 10.3389/fendo.2021.763846. eCollection 2021.
8
Stromal-Derived Extracellular Vesicles Suppress Proliferation of Bone Metastatic Cancer Cells Mediated by ERK2.
Mol Cancer Res. 2021 Oct;19(10):1763-1777. doi: 10.1158/1541-7786.MCR-20-0981. Epub 2021 May 21.
10
CAF cellular glycolysis: linking cancer cells with the microenvironment.
Tumour Biol. 2016 Jul;37(7):8503-14. doi: 10.1007/s13277-016-5049-3. Epub 2016 Apr 13.

引用本文的文献

2
Tissue-resident immune cells in cervical cancer: emerging roles and therapeutic implications.
Front Immunol. 2025 Apr 22;16:1541950. doi: 10.3389/fimmu.2025.1541950. eCollection 2025.
4
Functionalized zeolite regulates bone metabolic microenvironment.
Mater Today Bio. 2025 Feb 5;31:101558. doi: 10.1016/j.mtbio.2025.101558. eCollection 2025 Apr.
6
Krüppel-like factors family in health and disease.
MedComm (2020). 2024 Sep 10;5(9):e723. doi: 10.1002/mco2.723. eCollection 2024 Sep.
7
Emerging roles for stromal cells in bone metastasis.
J Bone Oncol. 2024 May 17;47:100610. doi: 10.1016/j.jbo.2024.100610. eCollection 2024 Aug.

本文引用的文献

2
ROCK2 Promotes Osteosarcoma Growth and Glycolysis by Up-Regulating HKII via Phospho-PI3K/AKT Signalling.
Cancer Manag Res. 2021 Jan 18;13:449-462. doi: 10.2147/CMAR.S279496. eCollection 2021.
3
The metabolism of cancer cells during metastasis.
Nat Rev Cancer. 2021 Mar;21(3):162-180. doi: 10.1038/s41568-020-00320-2. Epub 2021 Jan 18.
4
Metabolic regulation of skeletal cell fate and function in physiology and disease.
Nat Metab. 2021 Jan;3(1):11-20. doi: 10.1038/s42255-020-00321-3. Epub 2021 Jan 4.
6
Metabolic markers for diagnosis and risk-prediction of multiple myeloma.
Life Sci. 2021 Jan 15;265:118852. doi: 10.1016/j.lfs.2020.118852. Epub 2020 Dec 2.
7
Myeloma-Modified Adipocytes Exhibit Metabolic Dysfunction and a Senescence-Associated Secretory Phenotype.
Cancer Res. 2021 Feb 1;81(3):634-647. doi: 10.1158/0008-5472.CAN-20-1088. Epub 2020 Nov 20.
8
Induction of a Timed Metabolic Collapse to Overcome Cancer Chemoresistance.
Cell Metab. 2020 Sep 1;32(3):391-403.e6. doi: 10.1016/j.cmet.2020.07.009. Epub 2020 Aug 6.
9
Cancer Cells Don't Live Alone: Metabolic Communication within Tumor Microenvironments.
Dev Cell. 2020 Jul 20;54(2):183-195. doi: 10.1016/j.devcel.2020.06.018. Epub 2020 Jul 7.
10
Both aerobic glycolysis and mitochondrial respiration are required for osteoclast differentiation.
FASEB J. 2020 Aug;34(8):11058-11067. doi: 10.1096/fj.202000771R. Epub 2020 Jul 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验