Suppr超能文献

白质分数各向异性的寿命规范性模型:在早期精神病中的应用。

Lifespan Normative Models of White Matter Fractional Anisotropy: Applications to Early Psychosis.

作者信息

Cirstian Ramona, Forde Natalie J, Zhang Gary, Hellemann Gerhard S, Beckmann Christian F, Kraguljac Nina V, Marquand Andre F

机构信息

Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.

Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen, the Netherlands.

出版信息

bioRxiv. 2024 Dec 11:2024.12.11.627897. doi: 10.1101/2024.12.11.627897.

Abstract

This study presents large-scale normative models of white matter (WM) organization across the lifespan, using diffusion MRI data from over 25,000 healthy individuals aged 0-100 years. These models capture lifespan trajectories and inter-individual variation in fractional anisotropy (FA), a marker of white matter integrity. By addressing non-Gaussian data distributions, race, and site effects, the models offer reference baselines across diverse ages, ethnicities, and scanning conditions. We applied these FA models to the HCP Early Psychosis cohort and performed a multivariate analysis to map symptoms onto deviations from multimodal normative models using multi-view sparse canonical correlation analysis (msCCA). Our results reveal extensive white matter heterogeneity in psychosis, which is not captured by group-level analyses, with key regions identified, including the right uncinate fasciculus and thalami. These normative models offer valuable tools for individualized WM deviation identification, improving precision in psychiatric assessments. All models are publicly available for community use.

摘要

本研究利用来自25000多名0至100岁健康个体的扩散磁共振成像数据,呈现了全生命周期白质(WM)组织的大规模规范模型。这些模型捕捉了分数各向异性(FA)的全生命周期轨迹和个体间差异,FA是白质完整性的一个指标。通过处理非高斯数据分布、种族和部位效应,这些模型提供了跨越不同年龄、种族和扫描条件的参考基线。我们将这些FA模型应用于人类连接组计划(HCP)早期精神病队列,并使用多视图稀疏典型相关分析(msCCA)进行多变量分析,以将症状映射到与多模态规范模型的偏差上。我们的结果揭示了精神病中广泛的白质异质性,这是群体水平分析所无法捕捉到的,并确定了关键区域,包括右侧钩束和丘脑。这些规范模型为个体白质偏差识别提供了有价值的工具,提高了精神病评估的精度。所有模型均可公开供社区使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca11/11661138/57a4eb9e24cb/nihpp-2024.12.11.627897v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验