Suppr超能文献

用于电化学检测严重急性呼吸综合征冠状病毒2刺突蛋白1的硼掺杂金刚石薄膜

Boron doped diamond thin films for the electrochemical detection of SARS-CoV-2 S1 protein.

作者信息

Witt Suzanne, Rogien Alexis, Werner Diana, Siegenthaler James, Lesiyon Raymond, Kurien Noelle, Rechenberg Robert, Baule Nina, Hardy Aaron, Becker Michael

机构信息

Fraunhofer USA, Center Midwest, 1449 Engineering Research Ct., East Lansing, MI 48824, USA.

Chemical Engineering & Materials Science Department, Michigan State University, 428 S Shaw Ln #2100, East Lansing, MI 48824, USA.

出版信息

Diam Relat Mater. 2021 Oct;118:108542. doi: 10.1016/j.diamond.2021.108542. Epub 2021 Jul 28.

Abstract

Amidst a global pandemic, a precise and widely accessible rapid detection method is needed for accurate diagnosis and contact tracing. The lack of this technology was exposed through the outbreak of SARS-CoV-2 beginning in 2019. This study sets the foundation for the development of a boron doped diamond (BDD)-based impedimetric sensor. While specifically developed for use in the detection of SARS-CoV-2, this technology uses principles that could be adapted to detect other viruses in the future. Boron doped polycrystalline diamond electrodes were functionalized with a biotin-streptavidin linker complex and biotinylated anti-SARS-CoV-2 S1 antibodies. Electrodes were then incubated with the S1 subunit of the SARS-CoV-2 spike surface protein, and an electrical response was recorded using the changes to the electrode's charge transfer resistance (R), measured through electrochemical impedance spectroscopy (EIS). Detectable changes in the R were observed after 5-min incubation periods with S1 subunit concentrations as low as 1 fg/mL. Incubation with Influenza-B Hemagglutinin protein resulted in minimal change to the R, indicating specificity of the BDD electrode for the S1 subunit of SARS-CoV-2. Detection of the S1 subunit in a complex (cell culture) medium was also demonstrated by modifying the EIS protocol to minimize the effects of sample matrix binding. BDD films of varying surface morphologies were investigated, and material characterization was used to give insight into the microstructure-performance relationship of the BDD sensing surface.

摘要

在全球大流行的背景下,需要一种精确且广泛可用的快速检测方法来进行准确诊断和接触者追踪。2019年开始的SARS-CoV-2疫情暴露了这项技术的缺失。本研究为基于硼掺杂金刚石(BDD)的阻抗传感器的开发奠定了基础。虽然该技术是专门为检测SARS-CoV-2而开发的,但所采用的原理未来可用于检测其他病毒。硼掺杂多晶金刚石电极用生物素-链霉亲和素连接复合物和生物素化的抗SARS-CoV-2 S1抗体进行功能化修饰。然后将电极与SARS-CoV-2刺突表面蛋白的S1亚基孵育,并通过电化学阻抗谱(EIS)测量电极电荷转移电阻(R)的变化来记录电响应。在与低至1 fg/mL的S1亚基浓度孵育5分钟后,观察到R有可检测到的变化。与乙型流感血凝素蛋白孵育后,R的变化极小,表明BDD电极对SARS-CoV-2的S1亚基具有特异性。通过修改EIS方案以最小化样品基质结合的影响,还证明了在复杂(细胞培养)培养基中对S1亚基的检测。研究了不同表面形态的BDD薄膜,并利用材料表征来深入了解BDD传感表面的微观结构与性能的关系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a73/8316675/97768a4ea671/ga1_lrg.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验