Andrino Alberto, Guggenberger Georg, Kernchen Sarmite, Mikutta Robert, Sauheitl Leopold, Boy Jens
Institute of Soil Science, Leibniz Universität Hannover, Hanover, Germany.
Bayreuth Center of Ecology and Environmental Research, University of Bayreuth, Bayreuth, Germany.
Front Plant Sci. 2021 Jul 15;12:661842. doi: 10.3389/fpls.2021.661842. eCollection 2021.
Most plants living in tropical acid soils depend on the arbuscular mycorrhizal (AM) symbiosis for mobilizing low-accessible phosphorus (P), due to its strong bonding by iron (Fe) oxides. The roots release low-molecular-weight organic acids (LMWOAs) as a mechanism to increase soil P availability by ligand exchange or dissolution. However, little is known on the LMWOA production by AM fungi (AMF), since most studies conducted on AM plants do not discriminate on the LMWOA origin. This study aimed to determine whether AMF release significant amounts of LMWOAs to liberate P bound to Fe oxides, which is otherwise unavailable for the plant. L. plants mycorrhized with were placed in a bicompartmental mesocosm, with P sources only accessible by AMF. Fingerprinting of LMWOAs in compartments containing free and goethite-bound orthophosphate (OP or GOE-OP) and phytic acid (PA or GOE-PA) was done. To assess P mobilization AM symbiosis, P content, photosynthesis, and the degree of mycorrhization were determined in the plant; whereas, AM hyphae abundance was determined using lipid biomarkers. The results showing a higher shoot P content, along with a lower N:P ratio and a higher photosynthetic capacity, may be indicative of a higher photosynthetic P-use efficiency, when AM plants mobilized P from less-accessible sources. The presence of mono-, di-, and tricarboxylic LMWOAs in compartments containing OP or GOE-OP and phytic acid (PA or GOE-PA) points toward the occurrence of reductive dissolution and ligand exchange/dissolution reactions. Furthermore, hyphae grown in goethite loaded with OP and PA exhibited an increased content of unsaturated lipids, pointing to an increased membrane fluidity in order to maintain optimal hyphal functionality and facilitate the incorporation of P. Our results underpin the centrality of AM symbiosis in soil biogeochemical processes, by highlighting the ability of the AMF and accompanying microbiota in releasing significant amounts of LMWOAs to mobilize P bound to Fe oxides.
大多数生长在热带酸性土壤中的植物依赖丛枝菌根(AM)共生来活化难以获取的磷(P),因为磷会与铁(Fe)氧化物紧密结合。根系会释放低分子量有机酸(LMWOAs),作为通过配体交换或溶解来提高土壤磷有效性的一种机制。然而,关于AM真菌(AMF)产生LMWOAs的情况却知之甚少,因为大多数针对AM植物的研究并未区分LMWOAs的来源。本研究旨在确定AMF是否会释放大量LMWOAs来释放与铁氧化物结合的磷,否则植物无法获取这些磷。将接种了 的L.植物置于双隔层中型生态系统中,磷源仅AMF能够接触到。对含有游离态和针铁矿结合态正磷酸盐(OP或GOE - OP)以及植酸(PA或GOE - PA)的隔层中的LMWOAs进行指纹图谱分析。为了评估AM共生对磷的活化作用,测定了植物中的磷含量、光合作用以及菌根化程度;而AM菌丝丰度则使用脂质生物标志物来测定。结果表明,当AM植物从难以获取的磷源中获取磷时,地上部磷含量较高,氮磷比更低,光合能力更强,这可能表明光合磷利用效率更高。在含有OP或GOE - OP以及植酸(PA或GOE - PA)的隔层中存在单羧酸、二羧酸和三羧酸LMWOAs,这表明发生了还原溶解以及配体交换/溶解反应。此外,在负载有OP和PA的针铁矿中生长的菌丝体不饱和脂质含量增加,这表明膜流动性增加,以维持最佳的菌丝功能并促进磷的吸收。我们的研究结果强调了AMF和相关微生物群释放大量LMWOAs以活化与铁氧化物结合的磷的能力,从而证实了AM共生在土壤生物地球化学过程中的核心地位。