Suppr超能文献

使用颜色编码图的深度学习检测圆锥角膜的变化

Keratoconus detection of changes using deep learning of colour-coded maps.

作者信息

Chen Xu, Zhao Jiaxin, Iselin Katja C, Borroni Davide, Romano Davide, Gokul Akilesh, McGhee Charles N J, Zhao Yitian, Sedaghat Mohammad-Reza, Momeni-Moghaddam Hamed, Ziaei Mohammed, Kaye Stephen, Romano Vito, Zheng Yalin

机构信息

Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK.

Department of Ophthalmology, St Paul's Eye Unit, Royal Liverpool University Hospital, Liverpool, UK.

出版信息

BMJ Open Ophthalmol. 2021 Jul 13;6(1):e000824. doi: 10.1136/bmjophth-2021-000824. eCollection 2021.

Abstract

OBJECTIVE

To evaluate the accuracy of convolutional neural networks technique (CNN) in detecting keratoconus using colour-coded corneal maps obtained by a Scheimpflug camera.

DESIGN

Multicentre retrospective study.

METHODS AND ANALYSIS

We included the images of keratoconic and healthy volunteers' eyes provided by three centres: Royal Liverpool University Hospital (Liverpool, UK), Sedaghat Eye Clinic (Mashhad, Iran) and The New Zealand National Eye Center (New Zealand). Corneal tomography scans were used to train and test CNN models, which included healthy controls. Keratoconic scans were classified according to the Amsler-Krumeich classification. Keratoconic scans from Iran were used as an independent testing set. Four maps were considered for each scan: axial map, anterior and posterior elevation map, and pachymetry map.

RESULTS

A CNN model detected keratoconus versus health eyes with an accuracy of 0.9785 on the testing set, considering all four maps concatenated. Considering each map independently, the accuracy was 0.9283 for axial map, 0.9642 for thickness map, 0.9642 for the front elevation map and 0.9749 for the back elevation map. The accuracy of models in recognising between healthy controls and stage 1 was 0.90, between stages 1 and 2 was 0.9032, and between stages 2 and 3 was 0.8537 using the concatenated map.

CONCLUSION

CNN provides excellent detection performance for keratoconus and accurately grades different severities of disease using the colour-coded maps obtained by the Scheimpflug camera. CNN has the potential to be further developed, validated and adopted for screening and management of keratoconus.

摘要

目的

利用通过Scheimpflug相机获得的彩色编码角膜地形图,评估卷积神经网络技术(CNN)检测圆锥角膜的准确性。

设计

多中心回顾性研究。

方法与分析

我们纳入了由三个中心提供的圆锥角膜患者和健康志愿者眼睛的图像:英国利物浦皇家大学医院、伊朗马什哈德的Sedaghat眼科诊所和新西兰国家眼科中心。角膜断层扫描用于训练和测试CNN模型,其中包括健康对照。圆锥角膜扫描根据Amsler-Krumeich分类进行分类。来自伊朗的圆锥角膜扫描用作独立测试集。每次扫描考虑四张地图:轴向图、前后高度图和测厚图。

结果

考虑所有四张拼接地图时,一个CNN模型在测试集上检测圆锥角膜与健康眼睛的准确率为0.9785。单独考虑每张地图时,轴向图的准确率为0.9283,厚度图为0.9642,前表面高度图为0.9642,后表面高度图为0.9749。使用拼接地图时,模型区分健康对照与1期圆锥角膜的准确率为0.90,区分1期和2期的准确率为0.9032,区分2期和3期的准确率为0.8537。

结论

CNN在检测圆锥角膜方面具有出色的性能,并能使用Scheimpflug相机获得的彩色编码地图准确分级不同严重程度的疾病。CNN有潜力进一步开发、验证并应用于圆锥角膜的筛查和管理。

相似文献

1
Keratoconus detection of changes using deep learning of colour-coded maps.使用颜色编码图的深度学习检测圆锥角膜的变化
BMJ Open Ophthalmol. 2021 Jul 13;6(1):e000824. doi: 10.1136/bmjophth-2021-000824. eCollection 2021.
8
Keratoconus diagnosis with optical coherence tomography pachymetry mapping.基于光学相干断层扫描测厚成像的圆锥角膜诊断
Ophthalmology. 2008 Dec;115(12):2159-66. doi: 10.1016/j.ophtha.2008.08.004. Epub 2008 Nov 5.

引用本文的文献

2
Deep learning-based keratoconus detection from Scheimpflug images.基于深度学习的从眼前节图像检测圆锥角膜
Biomed Opt Express. 2025 Jul 7;16(8):3047-3060. doi: 10.1364/BOE.559663. eCollection 2025 Aug 1.
10
Artificial intelligence for detecting keratoconus.人工智能在圆锥角膜检测中的应用。
Cochrane Database Syst Rev. 2023 Nov 15;11(11):CD014911. doi: 10.1002/14651858.CD014911.pub2.

本文引用的文献

1
Impact of COVID-19 on keratoconus patients waiting for corneal cross linking.COVID-19 对角膜交联手术等待患者的影响。
Eur J Ophthalmol. 2021 Nov;31(6):3490-3493. doi: 10.1177/11206721211001315. Epub 2021 Mar 15.
3
Artificial intelligence and computational pathology.人工智能与计算病理学。
Lab Invest. 2021 Apr;101(4):412-422. doi: 10.1038/s41374-020-00514-0. Epub 2021 Jan 16.
5
ROSE: A Retinal OCT-Angiography Vessel Segmentation Dataset and New Model.ROSE:一个视网膜 OCT-A 血管分割数据集和新模型。
IEEE Trans Med Imaging. 2021 Mar;40(3):928-939. doi: 10.1109/TMI.2020.3042802. Epub 2021 Mar 2.
7
Keratoconus Screening Based on Deep Learning Approach of Corneal Topography.基于角膜地形深度学习方法的圆锥角膜筛查。
Transl Vis Sci Technol. 2020 Sep 25;9(2):53. doi: 10.1167/tvst.9.2.53. eCollection 2020 Sep.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验