Suppr超能文献

镰状细胞病患者在门诊就诊期间使用生命体征进行疼痛强度评估。

Pain Intensity Assessment in Sickle Cell Disease Patients Using Vital Signs During Hospital Visits.

作者信息

Padhee Swati, Alambo Amanuel, Banerjee Tanvi, Subramaniam Arvind, Abrams Daniel M, Nave Gary K, Shah Nirmish

机构信息

Wright State University, Dayton, USA.

Duke University, Durham, USA.

出版信息

Pattern Recognit (2021). 2021 Jan;12662:77-85. doi: 10.1007/978-3-030-68790-8_7. Epub 2021 Feb 23.

Abstract

Pain in sickle cell disease (SCD) is often associated with increased morbidity, mortality, and high healthcare costs. The standard method for predicting the absence, presence, and intensity of pain has long been self-report. However, medical providers struggle to manage patients based on subjective pain reports correctly and pain medications often lead to further difficulties in patient communication as they may cause sedation and sleepiness. Recent studies have shown that objective physiological measures can predict subjective self-reported pain scores for inpatient visits using machine learning (ML) techniques. In this study, we evaluate the generalizability of ML techniques to data collected from 50 patients over an extended period across three types of hospital visits (i.e., inpatient, outpatient and outpatient evaluation). We compare five classification algorithms for various pain intensity levels at both intra-individual (within each patient) and inter-individual (between patients) level. While all the tested classifiers perform much better than chance, a Decision Tree (DT) model performs best at predicting pain on an 11-point severity scale (from 0-10) with an accuracy of 0.728 at an inter-individual level and 0.653 at an intra-individual level. The accuracy of DT significantly improves to 0.941 on a 2-point rating scale (i.e., no/mild pain: 0-5, severe pain: 6-10) at an inter-individual level. Our experimental results demonstrate that ML techniques can provide an objective and quantitative evaluation of pain intensity levels for all three types of hospital visits.

摘要

镰状细胞病(SCD)中的疼痛通常与发病率增加、死亡率上升以及高昂的医疗成本相关。长期以来,预测疼痛是否存在、疼痛强度的标准方法一直是自我报告。然而,医疗服务提供者很难基于主观疼痛报告正确地管理患者,而且止痛药物可能会导致镇静和嗜睡,进而在患者沟通方面引发更多困难。最近的研究表明,客观生理指标可以使用机器学习(ML)技术预测住院患者自我报告的主观疼痛评分。在本研究中,我们评估了ML技术对从50名患者在三种类型的医院就诊(即住院、门诊和门诊评估)的较长时间内收集的数据的通用性。我们在个体内(每位患者内部)和个体间(患者之间)层面比较了五种针对不同疼痛强度水平的分类算法。虽然所有测试的分类器表现都远高于随机水平,但决策树(DT)模型在预测11级严重程度量表(从0至10)的疼痛方面表现最佳,在个体间层面的准确率为0.728,在个体内层面的准确率为0.653。在2级评分量表(即无/轻度疼痛:0至5,重度疼痛:6至10)上,DT在个体间层面的准确率显著提高到0.941。我们的实验结果表明,ML技术可以为所有三种类型的医院就诊提供疼痛强度水平的客观定量评估。

相似文献

1
Pain Intensity Assessment in Sickle Cell Disease Patients Using Vital Signs During Hospital Visits.
Pattern Recognit (2021). 2021 Jan;12662:77-85. doi: 10.1007/978-3-030-68790-8_7. Epub 2021 Feb 23.
3
Improving Pain Management in Patients with Sickle Cell Disease from Physiological Measures Using Machine Learning Techniques.
Smart Health (Amst). 2018 Jun;7-8:48-59. doi: 10.1016/j.smhl.2018.01.002. Epub 2018 Feb 2.
6
Integration of neuropsychology services in a sickle cell clinic and subsequent healthcare use for pain crises.
Clin Neuropsychol. 2019 Oct;33(7):1195-1211. doi: 10.1080/13854046.2018.1535664. Epub 2018 Nov 24.
10
Novel Metrics in the Longitudinal Evaluation of Pain Data in Sickle Cell Disease.
Clin J Pain. 2017 Jun;33(6):517-527. doi: 10.1097/AJP.0000000000000431.

引用本文的文献

1
Mathematical modeling of SCD: a literature review.
J Sick Cell Dis. 2025 Apr 16;2(1):yoaf015. doi: 10.1093/jscdis/yoaf015. eCollection 2025.
2
Exploring machine learning algorithms in sickle cell disease patient data: A systematic review.
PLoS One. 2024 Nov 11;19(11):e0313315. doi: 10.1371/journal.pone.0313315. eCollection 2024.

本文引用的文献

1
Measuring Pain in Sickle Cell Disease using Clinical Text.
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:5838-5841. doi: 10.1109/EMBC44109.2020.9175599.
2
Improving Pain Management in Patients with Sickle Cell Disease from Physiological Measures Using Machine Learning Techniques.
Smart Health (Amst). 2018 Jun;7-8:48-59. doi: 10.1016/j.smhl.2018.01.002. Epub 2018 Feb 2.
3
Type 2 diabetes and incidence of cardiovascular diseases: a cohort study in 1·9 million people.
Lancet Diabetes Endocrinol. 2015 Feb;3(2):105-13. doi: 10.1016/S2213-8587(14)70219-0. Epub 2014 Nov 11.
4
5
Prediction of fetal hemoglobin in sickle cell anemia using an ensemble of genetic risk prediction models.
Circ Cardiovasc Genet. 2014 Apr;7(2):110-5. doi: 10.1161/CIRCGENETICS.113.000387. Epub 2014 Mar 1.
6
Vaso-occlusion in sickle cell disease: pathophysiology and novel targeted therapies.
Blood. 2013 Dec 5;122(24):3892-8. doi: 10.1182/blood-2013-05-498311. Epub 2013 Sep 19.
8
Multiple imputation by chained equations: what is it and how does it work?
Int J Methods Psychiatr Res. 2011 Mar;20(1):40-9. doi: 10.1002/mpr.329.
9
Studies with pain rating scales.
Ann Rheum Dis. 1978 Aug;37(4):378-81. doi: 10.1136/ard.37.4.378.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验