Magnetic Resonance Center (CERM), University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via L. Sacconi 6, Sesto Fiorentino 50019, Italy.
Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino 50019, Italy.
Anal Chem. 2021 Aug 17;93(32):11208-11214. doi: 10.1021/acs.analchem.1c01850. Epub 2021 Aug 2.
Biocompatible hydrogels for tissue regeneration/replacement and drug release with specific architectures can be obtained by three-dimensional bioprinting techniques. The preservation of the higher order structure of the proteins embedded in the hydrogels as drugs or modulators is critical for their biological activity. Solution nuclear magnetic resonance (NMR) experiments are currently used to investigate the higher order structure of biotherapeutics in comparability, similarity, and stability studies. However, the size of pores in the gel, protein-matrix interactions, and the size of the embedded proteins often prevent the use of this methodology. The recent advancements of solid-state NMR allow for the comparison of the higher order structure of the matrix-embedded and free isotopically enriched proteins, allowing for the evaluation of the functionality of the material in several steps of hydrogel development. Moreover, the structural information at atomic detail on the matrix-protein interactions paves the way for a structure-based design of these biomaterials.
通过三维生物打印技术可以获得具有特定结构的用于组织再生/替代和药物释放的生物相容性水凝胶。在水凝胶中作为药物或调节剂嵌入的蛋白质的高级结构的保留对于其生物活性至关重要。目前,溶液核磁共振(NMR)实验用于在可比性、相似性和稳定性研究中研究生物治疗剂的高级结构。然而,凝胶中的孔的大小、蛋白质-基质相互作用以及嵌入的蛋白质的大小通常会阻止该方法的使用。固态 NMR 的最新进展允许比较基质嵌入和自由同位素富集蛋白质的高级结构,从而可以在水凝胶开发的几个步骤中评估材料的功能。此外,关于基质-蛋白质相互作用的原子细节的结构信息为这些生物材料的基于结构的设计铺平了道路。