Nolan Nicole, Mitchell Megan, Mboning Lajoyce, Bouchard Louis-S, Pellegrini Matteo
Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095, USA.
Department of Computational and Systems Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA.
Geroscience. 2025 May 31. doi: 10.1007/s11357-025-01716-4.
Certain epigenetic modifications, such as the methylation of CpG sites, can serve as biomarkers for chronological age. Previously, we introduced the BayesAge frameworks for accurate age prediction through the use of locally weighted scatterplot smoothing (LOWESS) to capture the nonlinear relationship between methylation or gene expression and age, and maximum likelihood estimation (MLE) for bulk bisulfite and RNA sequencing data. Here, we introduce MicroBayesAge, a maximum likelihood framework for age prediction using DNA microarray data that provides less biased age predictions compared to commonly used linear methods. Furthermore, MicroBayesAge enhances prediction accuracy relative to previous versions of BayesAge by subdividing input data into age-specific cohorts and employing a new two-stage process for training and testing. Additionally, we explored the performance of our model for sex-specific age prediction which revealed slight improvements in accuracy for male patients, while no changes were observed for female patients.
某些表观遗传修饰,如CpG位点的甲基化,可作为实际年龄的生物标志物。此前,我们引入了BayesAge框架,通过使用局部加权散点图平滑法(LOWESS)来捕捉甲基化或基因表达与年龄之间的非线性关系,并对全基因组亚硫酸氢盐测序和RNA测序数据进行最大似然估计(MLE),以实现准确的年龄预测。在此,我们介绍MicroBayesAge,这是一种使用DNA微阵列数据进行年龄预测的最大似然框架,与常用的线性方法相比,它能提供偏差更小的年龄预测。此外,MicroBayesAge通过将输入数据细分为特定年龄组,并采用新的两阶段训练和测试过程,相对于BayesAge的先前版本提高了预测准确性。此外,我们还探索了我们的模型在性别特异性年龄预测方面的性能,结果显示男性患者的预测准确性略有提高,而女性患者则没有变化。