Department of Ophthalmology, Centre Hospitalier de l'Universite de Montreal (CHUM), Montreal, Quebec, Canada.
Department of Ophthalmology, Hopital Maisonneuve-Rosemont (CUO-HMR), Montreal, Quebec, Canada.
Br J Ophthalmol. 2023 Jan;107(1):90-95. doi: 10.1136/bjophthalmol-2021-319030. Epub 2021 Aug 3.
Automated machine learning (AutoML) is a novel tool in artificial intelligence (AI). This study assessed the discriminative performance of AutoML in differentiating retinal vein occlusion (RVO), retinitis pigmentosa (RP) and retinal detachment (RD) from normal fundi using ultra-widefield (UWF) pseudocolour fundus images.
Two ophthalmologists without coding experience carried out AutoML model design using a publicly available image data set (2137 labelled images). The data set was reviewed for low-quality and mislabeled images and then uploaded to the Google Cloud AutoML Vision platform for training and testing. We designed multiple binary models to differentiate RVO, RP and RD from normal fundi and compared them to bespoke models obtained from the literature. We then devised a multiclass model to detect RVO, RP and RD. Saliency maps were generated to assess the interpretability of the model.
The AutoML models demonstrated high diagnostic properties in the binary classification tasks that were generally comparable to bespoke deep-learning models (area under the precision-recall curve (AUPRC) 0.921-1, sensitivity 84.91%-89.77%, specificity 78.72%-100%). The multiclass AutoML model had an AUPRC of 0.876, a sensitivity of 77.93% and a positive predictive value of 82.59%. The per-label sensitivity and specificity, respectively, were normal fundi (91.49%, 86.75%), RVO (83.02%, 92.50%), RP (72.00%, 100%) and RD (79.55%,96.80%).
AutoML models created by ophthalmologists without coding experience can detect RVO, RP and RD in UWF images with very good diagnostic accuracy. The performance was comparable to bespoke deep-learning models derived by AI experts for RVO and RP but not for RD.
自动化机器学习(AutoML)是人工智能(AI)领域的一项新工具。本研究评估了 AutoML 在使用超广角(UWF)假彩色眼底图像区分视网膜静脉阻塞(RVO)、色素性视网膜炎(RP)和视网膜脱离(RD)与正常眼底方面的判别性能。
两位没有编码经验的眼科医生使用公共图像数据集(2137 个标记图像)进行 AutoML 模型设计。对数据集进行了低质量和标记错误图像的审查,然后将其上传到 Google Cloud AutoML Vision 平台进行训练和测试。我们设计了多个二进制模型来区分 RVO、RP 和 RD 与正常眼底,并将其与文献中获得的定制模型进行了比较。然后,我们设计了一个多类模型来检测 RVO、RP 和 RD。生成了显著图来评估模型的可解释性。
AutoML 模型在二进制分类任务中表现出较高的诊断性能,通常与定制的深度学习模型相当(精度-召回率曲线下面积(AUPRC)0.921-1,敏感性 84.91%-89.77%,特异性 78.72%-100%)。多类 AutoML 模型的 AUPRC 为 0.876,敏感性为 77.93%,阳性预测值为 82.59%。分别为正常眼底(91.49%,86.75%)、RVO(83.02%,92.50%)、RP(72.00%,100%)和 RD(79.55%,96.80%)。
没有编码经验的眼科医生创建的 AutoML 模型可以使用超广角图像非常准确地检测 RVO、RP 和 RD。性能与 AI 专家为 RVO 和 RP 开发的定制深度学习模型相当,但对于 RD 则不然。