Lee Jinsun, Liu Xinghui, Kumar Ashwani, Hwang Yosep, Lee Eunji, Yu Jianmin, Kim Young Dok, Lee Hyoyoung
Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS) 2066 Seoburo, Jangan-gu Suwon 16419 Republic of Korea
Department of Chemistry, Sungkyunkwan University 2066 Seoburo, Jangan-gu Suwon 16419 Republic of Korea.
Chem Sci. 2021 Jul 9;12(28):9619-9629. doi: 10.1039/d1sc03223b. eCollection 2021 Jul 21.
Photocatalytic N fixation to NH defect creation on TiO to activate ultra-stable N[triple bond, length as m-dash]N has drawn enormous scientific attention, but poor selectivity and low yield rate are the major bottlenecks. Additionally, whether N preferentially adsorbs on phase-selective defect sites on TiO in correlation with appropriate band alignment has yet to be explored. Herein, theoretical predictions reveal that the defect sites on disordered anatase (A) preferentially exhibit higher N adsorption ability with a reduced energy barrier for a potential-determining-step (N to NNH) than the disordered rutile (R) phase of TiO. Motivated by theoretical simulations, we synthesize a phase-selective disordered-anatase/ordered-rutile TiO photocatalyst (Na-A/R) by sodium-amine treatment of P25-TiO under ambient conditions, which exhibits an efficient NH formation rate of 432 μmol g h, which is superior to that of any other defect-rich disordered TiO under solar illumination with a high apparent quantum efficiency of 13.6% at 340 nm. The multi-synergistic effects including selective N chemisorption on the defect sites of Na-A with enhanced visible-light absorption, suitable band alignment, and rapid interfacial charge separation with R enable substantially enhanced N fixation.
光催化将氮固定为氨以及在二氧化钛上产生缺陷以激活超稳定的氮氮三键已引起了极大的科学关注,但选择性差和产率低是主要瓶颈。此外,氮是否优先吸附在二氧化钛的相选择性缺陷位点上以及与之相关的合适能带排列尚未得到探索。在此,理论预测表明,无序锐钛矿(A)上的缺陷位点比二氧化钛的无序金红石(R)相优先表现出更高的氮吸附能力,且对于决定电位步骤(N到NNH)的能垒更低。受理论模拟的启发,我们在环境条件下通过对P25 - TiO进行钠胺处理合成了一种相选择性无序锐钛矿/有序金红石二氧化钛光催化剂(Na - A/R),其在太阳能照射下表现出432 μmol g⁻¹ h⁻¹的高效氨生成速率,优于任何其他富含缺陷的无序二氧化钛,在340 nm处具有13.6%的高表观量子效率。包括在Na - A的缺陷位点上选择性氮化学吸附、增强的可见光吸收、合适的能带排列以及与R的快速界面电荷分离在内的多重协同效应使得固氮能力大幅增强。