Suppr超能文献

基于CRISPR的基因组编辑递送系统面临的挑战与纳米医学的机遇。

Challenges in delivery systems for CRISPR-based genome editing and opportunities of nanomedicine.

作者信息

Sioson Victor Aaron, Kim Minjong, Joo Jinmyoung

机构信息

School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919 Republic of Korea.

Department of Biological Science, Ulsan National Institute of Science and Technology, Ulsan, 44919 Republic of Korea.

出版信息

Biomed Eng Lett. 2021 Jul 13;11(3):217-233. doi: 10.1007/s13534-021-00199-4. eCollection 2021 Aug.

Abstract

The CRISPR-based genome editing technology has opened extremely useful strategies in biological research and clinical therapeutics, thus attracting great attention with tremendous progress in the past decade. Despite its robust potential in personalized and precision medicine, the CRISPR-based gene editing has been limited by inefficient in vivo delivery to the target cells and by safety concerns of viral vectors for clinical setting. In this review, recent advances in tailored nanoparticles as a means of non-viral delivery vector for CRISPR/Cas systems are thoroughly discussed. Unique characteristics of the nanoparticles including controllable size, surface tunability, and low immune response lead considerable potential of CRISPR-based gene editing as a translational medicine. We will present an overall view on essential elements in CRISPR/Cas systems and the nanoparticle-based delivery carriers including advantages and challenges. Perspectives to advance the current limitations are also discussed toward bench-to-bedside translation in engineering aspects.

摘要

基于CRISPR的基因组编辑技术在生物学研究和临床治疗中开辟了极其有用的策略,因此在过去十年中取得了巨大进展并引起了广泛关注。尽管基于CRISPR的基因编辑在个性化和精准医学方面具有强大潜力,但它一直受到体内向靶细胞递送效率低下以及临床环境中病毒载体安全性问题的限制。在这篇综述中,我们将全面讨论定制纳米颗粒作为CRISPR/Cas系统非病毒递送载体的最新进展。纳米颗粒的独特特性,包括可控大小、表面可调节性和低免疫反应,使基于CRISPR的基因编辑作为转化医学具有巨大潜力。我们将对CRISPR/Cas系统的基本要素以及基于纳米颗粒的递送载体进行全面概述,包括其优势和挑战。我们还将从工程学角度讨论克服当前局限性以推动从实验室到临床转化的前景。

相似文献

1
Challenges in delivery systems for CRISPR-based genome editing and opportunities of nanomedicine.
Biomed Eng Lett. 2021 Jul 13;11(3):217-233. doi: 10.1007/s13534-021-00199-4. eCollection 2021 Aug.
2
Strategies for nonviral nanoparticle-based delivery of CRISPR/Cas9 therapeutics.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2020 May;12(3):e1609. doi: 10.1002/wnan.1609. Epub 2019 Dec 2.
3
Biomaterial-assisted targeted and controlled delivery of CRISPR/Cas9 for precise gene editing.
Biomater Sci. 2023 May 30;11(11):3762-3783. doi: 10.1039/d2bm01636b.
4
Recent advances in the delivery and applications of nonviral CRISPR/Cas9 gene editing.
Drug Deliv Transl Res. 2023 May;13(5):1500-1519. doi: 10.1007/s13346-023-01320-z. Epub 2023 Mar 29.
5
Lipid-Nanoparticle-Based Delivery of CRISPR/Cas9 Genome-Editing Components.
Mol Pharm. 2022 Jun 6;19(6):1669-1686. doi: 10.1021/acs.molpharmaceut.1c00916. Epub 2022 May 20.
8
CRISPR/Cas systems usher in a new era of disease treatment and diagnosis.
Mol Biomed. 2022 Oct 14;3(1):31. doi: 10.1186/s43556-022-00095-y.
9
Enabling Precision Medicine with CRISPR-Cas Genome Editing Technology: A Translational Perspective.
Adv Exp Med Biol. 2023;1396:315-339. doi: 10.1007/978-981-19-5642-3_20.
10
Research Progress on Nanoparticles-Based CRISPR/Cas9 System for Targeted Therapy of Tumors.
Biomolecules. 2022 Sep 5;12(9):1239. doi: 10.3390/biom12091239.

引用本文的文献

1
CRISPR/Cas9 in colorectal cancer: Revolutionizing precision oncology through genome editing and targeted therapeutics.
Iran J Basic Med Sci. 2025;28(10):1279-1300. doi: 10.22038/ijbms.2025.87531.18902.
2
Advancing gene editing therapeutics: Clinical trials and innovative delivery systems across diverse diseases.
Mol Ther Nucleic Acids. 2025 Aug 5;36(3):102666. doi: 10.1016/j.omtn.2025.102666. eCollection 2025 Sep 9.
3
Targeted Gene Editing in Honey Bees Using Liposome-Based CRISPR-Cas9.
Biochem Genet. 2025 Aug 25. doi: 10.1007/s10528-025-11233-w.
4
Precision multiplexed base editing in human cells using Cas12a-derived base editors.
Nat Commun. 2025 May 31;16(1):5061. doi: 10.1038/s41467-025-59653-x.
6
Harnessing CRISPR potential for intervertebral disc regeneration strategies.
Front Bioeng Biotechnol. 2025 May 8;13:1562412. doi: 10.3389/fbioe.2025.1562412. eCollection 2025.
7
Unraveling the future of genomics: CRISPR, single-cell omics, and the applications in cancer and immunology.
Front Genome Ed. 2025 Apr 11;7:1565387. doi: 10.3389/fgeed.2025.1565387. eCollection 2025.
10
CRISPR-Cas9 Gene Therapy: Non-Viral Delivery and Stimuli-Responsive Nanoformulations.
Molecules. 2025 Jan 24;30(3):542. doi: 10.3390/molecules30030542.

本文引用的文献

1
Viral vector platforms within the gene therapy landscape.
Signal Transduct Target Ther. 2021 Feb 8;6(1):53. doi: 10.1038/s41392-021-00487-6.
2
Co-delivery of Sorafenib and CRISPR/Cas9 Based on Targeted Core-Shell Hollow Mesoporous Organosilica Nanoparticles for Synergistic HCC Therapy.
ACS Appl Mater Interfaces. 2020 Dec 23;12(51):57362-57372. doi: 10.1021/acsami.0c17660. Epub 2020 Dec 10.
3
Engineering precision nanoparticles for drug delivery.
Nat Rev Drug Discov. 2021 Feb;20(2):101-124. doi: 10.1038/s41573-020-0090-8. Epub 2020 Dec 4.
4
CRISPR-Cas9 genome editing using targeted lipid nanoparticles for cancer therapy.
Sci Adv. 2020 Nov 18;6(47). doi: 10.1126/sciadv.abc9450. Print 2020 Nov.
5
Solid Lipid Nanoparticles for Drug Delivery: Pharmacological and Biopharmaceutical Aspects.
Front Mol Biosci. 2020 Oct 30;7:587997. doi: 10.3389/fmolb.2020.587997. eCollection 2020.
6
Tissue-Specific Delivery of CRISPR Therapeutics: Strategies and Mechanisms of Non-Viral Vectors.
Int J Mol Sci. 2020 Oct 5;21(19):7353. doi: 10.3390/ijms21197353.
7
Multifunctional Gold Nanoparticles: A Novel Nanomaterial for Various Medical Applications and Biological Activities.
Front Bioeng Biotechnol. 2020 Aug 13;8:990. doi: 10.3389/fbioe.2020.00990. eCollection 2020.
8
Lipid nanoparticles for nucleic acid delivery: Current perspectives.
Adv Drug Deliv Rev. 2020;154-155:37-63. doi: 10.1016/j.addr.2020.06.002. Epub 2020 Jun 8.
9
Recent Advances in CRISPR/Cas9 Delivery Strategies.
Biomolecules. 2020 May 30;10(6):839. doi: 10.3390/biom10060839.
10
Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects.
Signal Transduct Target Ther. 2020 Jan 3;5(1):1. doi: 10.1038/s41392-019-0089-y.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验