文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

过氧化物酶模拟纳米酶在癌症光疗中的应用:进展与展望。

Peroxidase Mimetic Nanozymes in Cancer Phototherapy: Progress and Perspectives.

机构信息

Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan.

Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan.

出版信息

Biomolecules. 2021 Jul 11;11(7):1015. doi: 10.3390/biom11071015.


DOI:10.3390/biom11071015
PMID:34356639
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8301984/
Abstract

Nanomaterial-mediated cancer therapeutics is a fast developing field and has been utilized in potential clinical applications. However, most effective therapies, such as photodynamic therapy (PDT) and radio therapy (RT), are strongly oxygen-dependent, which hinders their practical applications. Later on, several strategies were developed to overcome tumor hypoxia, such as oxygen carrier nanomaterials and oxygen generated nanomaterials. Among these, oxygen species generation on nanozymes, especially catalase (CAT) mimetic nanozymes, convert endogenous hydrogen peroxide (HO) to oxygen (O) and peroxidase (POD) mimetic nanozymes converts endogenous HO to water (HO) and reactive oxygen species (ROS) in a hypoxic tumor microenvironment is a fascinating approach. The present review provides a detailed examination of past, present and future perspectives of POD mimetic nanozymes for effective oxygen-dependent cancer phototherapeutics.

摘要

纳米材料介导的癌症治疗是一个快速发展的领域,并已应用于潜在的临床应用中。然而,大多数有效的治疗方法,如光动力疗法 (PDT) 和放射疗法 (RT),强烈依赖于氧气,这阻碍了它们的实际应用。后来,开发了几种策略来克服肿瘤缺氧,例如氧载体纳米材料和氧气产生纳米材料。在这些策略中,纳米酶上的氧物种生成,特别是过氧化氢酶 (CAT) 模拟纳米酶,将内源性过氧化氢 (HO) 转化为氧气 (O),而过氧化物酶 (POD) 模拟纳米酶将内源性 HO 转化为水 (HO) 和活性氧物种 (ROS) 在缺氧的肿瘤微环境中是一种很有前途的方法。本综述详细考察了 POD 模拟纳米酶在有效的氧依赖型癌症光疗中的过去、现在和未来前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b7e/8301984/8a47c7eae224/biomolecules-11-01015-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b7e/8301984/d438c51d6cf0/biomolecules-11-01015-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b7e/8301984/79b66fa64596/biomolecules-11-01015-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b7e/8301984/888610ccb751/biomolecules-11-01015-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b7e/8301984/0ab668e55004/biomolecules-11-01015-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b7e/8301984/d1e233bf1d09/biomolecules-11-01015-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b7e/8301984/60c0aae686c4/biomolecules-11-01015-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b7e/8301984/7df1812445c5/biomolecules-11-01015-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b7e/8301984/8a47c7eae224/biomolecules-11-01015-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b7e/8301984/d438c51d6cf0/biomolecules-11-01015-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b7e/8301984/79b66fa64596/biomolecules-11-01015-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b7e/8301984/888610ccb751/biomolecules-11-01015-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b7e/8301984/0ab668e55004/biomolecules-11-01015-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b7e/8301984/d1e233bf1d09/biomolecules-11-01015-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b7e/8301984/60c0aae686c4/biomolecules-11-01015-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b7e/8301984/7df1812445c5/biomolecules-11-01015-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b7e/8301984/8a47c7eae224/biomolecules-11-01015-g007.jpg

相似文献

[1]
Peroxidase Mimetic Nanozymes in Cancer Phototherapy: Progress and Perspectives.

Biomolecules. 2021-7-11

[2]
A Photoresponsive Nanozyme for Synergistic Catalytic Therapy and Dual Phototherapy.

Small. 2021-3

[3]
Biomimetic Hybrid Nanozymes with Self-Supplied H and Accelerated O Generation for Enhanced Starvation and Photodynamic Therapy against Hypoxic Tumors.

Nano Lett. 2019-6-11

[4]
Ultrasmall theranostic nanozymes to modulate tumor hypoxia for augmenting photodynamic therapy and radiotherapy.

Biomater Sci. 2019-12-18

[5]
Tumor microenvironment-responsive nanozymes achieve photothermal-enhanced multiple catalysis against tumor hypoxia.

Acta Biomater. 2021-11

[6]
Photothermal-promoted O/OH generation of gold nanotetrapod @ platinum nano-islands for enhanced catalytic/photodynamic therapy.

J Colloid Interface Sci. 2024-3-15

[7]
Biomimetic Platinum Nanozyme Immobilized on 2D Metal-Organic Frameworks for Mitochondrion-Targeting and Oxygen Self-Supply Photodynamic Therapy.

ACS Appl Mater Interfaces. 2020-1-2

[8]
Hypoxia-tropic nanozymes as oxygen generators for tumor-favoring theranostics.

Biomaterials. 2020-2

[9]
Catalase-Like Nanozymes: Classification, Catalytic Mechanisms, and Their Applications.

Small. 2022-9

[10]
Bimetallic Ions Functionalized Metal-Organic-Framework Nanozyme for Tumor Microenvironment Regulating and Enhanced Photodynamic Therapy for Hypoxic Tumor.

Adv Healthc Mater. 2023-10

引用本文的文献

[1]
Folate-Modified Albumin-Functionalized Iron Oxide Nanoparticles for Theranostics: Engineering and In Vitro PDT Treatment of Breast Cancer Cell Lines.

Pharmaceutics. 2025-7-30

[2]
Mn and Cu complexes of a novel malic acid-cysteine ligand with remarkable ROS scavenging activity.

RSC Adv. 2025-7-4

[3]
Preparation of Iron oxide/palladium nanoparticles modified with carbon quantum dots (Pd@CQD@FeO): insight to anti-cancer effect and ROS generation.

Sci Rep. 2025-5-19

[4]
Review of light activated antibacterial nanomaterials in the second biological window.

J Nanobiotechnology. 2025-4-15

[5]
New horizons for the therapeutic application of nanozymes in cancer treatment.

J Nanobiotechnology. 2025-2-20

[6]
Emerging engineered nanozymes: current status and future perspectives in cancer treatments.

Nanoscale Adv. 2025-1-28

[7]
Iron-based MOF with Catalase-like activity improves the synergistic therapeutic effect of PDT/ferroptosis/starvation therapy by reversing the tumor hypoxic microenvironment.

J Nanobiotechnology. 2024-11-14

[8]
Nocardamine mitigates cellular dysfunction induced by oxidative stress in periodontal ligament stem cells.

Stem Cell Res Ther. 2024-8-7

[9]
Neuromodulation by nanozymes and ultrasound during Alzheimer's disease management.

J Nanobiotechnology. 2024-3-30

[10]
Gold single atom-based aptananozyme as an ultrasensitive and selective colorimetric probe for detection of thrombin and C-reactive protein.

Mikrochim Acta. 2023-12-28

本文引用的文献

[1]
A cobalt-doped iron oxide nanozyme as a highly active peroxidase for renal tumor catalytic therapy.

RSC Adv. 2019-6-17

[2]
Nanozyme-based catalytic theranostics.

RSC Adv. 2019-12-23

[3]
Advances in nanomaterials for treatment of hypoxic tumor.

Natl Sci Rev. 2020-7-8

[4]
Recent advances in near infrared light responsive multi-functional nanostructures for phototheranostic applications.

Biomater Sci. 2021-8-21

[5]
Biodegradable and Peroxidase-Mimetic Boron Oxynitride Nanozyme for Breast Cancer Therapy.

Adv Sci (Weinh). 2021-8

[6]
Near-Infrared Light Enhanced Peroxidase-Like Activity of PEGylated Palladium Nanozyme for Highly Efficient Biofilm Eradication.

J Biomed Nanotechnol. 2021-6-1

[7]
Gold Nanozymes: From Concept to Biomedical Applications.

Nanomicro Lett. 2020-10-27

[8]
Single NIR Laser-Activated Multifunctional Nanoparticles for Cascaded Photothermal and Oxygen-Independent Photodynamic Therapy.

Nanomicro Lett. 2019-8-19

[9]
Ultrasmall Alloy Nanozyme for Ultrasound- and Near-Infrared Light-Promoted Tumor Ablation.

ACS Nano. 2021-4-27

[10]
Tailoring photosensitive ROS for advanced photodynamic therapy.

Exp Mol Med. 2021-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索