Suppr超能文献

利用计算机断层扫描成像识别非小细胞肺癌的组织学亚型:胶囊网络、卷积神经网络和放射组学的比较研究

Identifying the histologic subtypes of non-small cell lung cancer with computed tomography imaging: a comparative study of capsule net, convolutional neural network, and radiomics.

作者信息

Liu Han, Jiao Zhicheng, Han Wenjuan, Jing Bin

机构信息

School of Biomedical Engineering, Capital Medical University, Beijing, China.

Department of Radiology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.

出版信息

Quant Imaging Med Surg. 2021 Jun;11(6):2756-2765. doi: 10.21037/qims-20-734.

Abstract

BACKGROUND

Discriminating the subtypes of non-small cell lung cancer (NSCLC) based on computed tomography (CT) images is a challenging task for radiologists. Although several machine learning methods such as radiomics, and deep learning methods such as convolutional neural networks (CNNs) have been proposed to explore the problem, large sample sizes are required for effective training, and this may not be easily achieved in single-center datasets.

METHODS

In this study, an automated subtype recognition model with capsule net (CapsNet) was developed for the subtype discrimination of NSCLC. CapsNet utilizes an activity vector to record the relative spatial relationship of image elements that can subsequently better delineate the global image characteristics. CT images of 72 adenocarcinoma (AC) and 54 squamous cell carcinoma (SCC) patients were retrospectively collected from a single clinical center. The cancer region on the CT image was manually segmented for every subject by an experienced radiologist, and CapsNet, CNN, and four radiomics models were then used to construct the recognition model.

RESULTS

The study demonstrated that CapsNet achieved the best discriminative performance (accuracy 81.3%, specificity 80.7%, sensitivity 82.2%) although its area under the curve was just marginally better than that of the optimal random forest (RF) based radiomics model. Not surprisingly, the performance of the CNN was only comparable to the other radiomics models.

CONCLUSIONS

This study demonstrated that CapsNet is a viable potential framework for discriminating the subtypes of NSCLC, and its use could be extended to the recognition of other diseases especially in limited single-center datasets.

摘要

背景

基于计算机断层扫描(CT)图像鉴别非小细胞肺癌(NSCLC)的亚型对放射科医生来说是一项具有挑战性的任务。尽管已经提出了几种机器学习方法,如放射组学,以及深度学习方法,如卷积神经网络(CNN)来探索这个问题,但有效训练需要大样本量,而这在单中心数据集中可能不容易实现。

方法

在本研究中,开发了一种带有胶囊网络(CapsNet)的自动亚型识别模型用于NSCLC的亚型鉴别。CapsNet利用一个活动向量来记录图像元素的相对空间关系,随后可以更好地描绘全局图像特征。从单个临床中心回顾性收集了72例腺癌(AC)和54例鳞状细胞癌(SCC)患者的CT图像。由一位经验丰富的放射科医生为每个受试者手动分割CT图像上的癌区,然后使用CapsNet、CNN和四种放射组学模型构建识别模型。

结果

研究表明,CapsNet实现了最佳的鉴别性能(准确率81.3%,特异性80.7%,敏感性82.2%),尽管其曲线下面积仅略优于基于最优随机森林(RF)的放射组学模型。不出所料,CNN的性能仅与其他放射组学模型相当。

结论

本研究表明,CapsNet是鉴别NSCLC亚型的一个可行的潜在框架,其应用可以扩展到其他疾病的识别,特别是在有限的单中心数据集中。

相似文献

2
Histologic subtype classification of non-small cell lung cancer using PET/CT images.
Eur J Nucl Med Mol Imaging. 2021 Feb;48(2):350-360. doi: 10.1007/s00259-020-04771-5. Epub 2020 Aug 10.
3
Lung cancer histology classification from CT images based on radiomics and deep learning models.
Med Biol Eng Comput. 2021 Jan;59(1):215-226. doi: 10.1007/s11517-020-02302-w. Epub 2021 Jan 7.
5
Hyperspectral Image Classification with Capsule Network Using Limited Training Samples.
Sensors (Basel). 2018 Sep 18;18(9):3153. doi: 10.3390/s18093153.
6
Histological Subtype Classification of Non-Small Cell Lung Cancer with Radiomics and 3D Convolutional Neural Networks.
J Imaging Inform Med. 2024 Dec;37(6):2895-2909. doi: 10.1007/s10278-024-01152-4. Epub 2024 Jun 11.
7
VCNet: Hybrid Deep Learning Model for Detection and Classification of Lung Carcinoma Using Chest Radiographs.
Front Public Health. 2022 Jun 20;10:894920. doi: 10.3389/fpubh.2022.894920. eCollection 2022.
8
Lung tumor segmentation in 4D CT images using motion convolutional neural networks.
Med Phys. 2021 Nov;48(11):7141-7153. doi: 10.1002/mp.15204. Epub 2021 Sep 13.
9
Capsule Networks Showed Excellent Performance in the Classification of hERG Blockers/Nonblockers.
Front Pharmacol. 2020 Jan 28;10:1631. doi: 10.3389/fphar.2019.01631. eCollection 2019.

引用本文的文献

3
Radiation hematologic toxicity prediction in rectal cancer: a comparative radiomics-based study on CT image and dose map.
Front Oncol. 2025 Mar 4;15:1516855. doi: 10.3389/fonc.2025.1516855. eCollection 2025.
4
Radiomics in distinguishing between lung adenocarcinoma and lung squamous cell carcinoma: a systematic review and meta-analysis.
Front Oncol. 2024 Sep 24;14:1381217. doi: 10.3389/fonc.2024.1381217. eCollection 2024.
6
A radiomics-based brain network in T1 images: construction, attributes, and applications.
Cereb Cortex. 2024 Jan 31;34(2). doi: 10.1093/cercor/bhae016.
7
AI/ML advances in non-small cell lung cancer biomarker discovery.
Front Oncol. 2023 Dec 11;13:1260374. doi: 10.3389/fonc.2023.1260374. eCollection 2023.
9
Multi-task learning-based histologic subtype classification of non-small cell lung cancer.
Radiol Med. 2023 May;128(5):537-543. doi: 10.1007/s11547-023-01621-w. Epub 2023 Mar 28.
10
Are deep models in radiomics performing better than generic models? A systematic review.
Eur Radiol Exp. 2023 Mar 15;7(1):11. doi: 10.1186/s41747-023-00325-0.

本文引用的文献

1
Dynamic Routing Capsule Networks for Mild Cognitive Impairment Diagnosis.
Med Image Comput Comput Assist Interv. 2019;2019:620-628. doi: 10.1007/978-3-030-32251-9_68. Epub 2019 Oct 10.
3
Radiomics prediction model for the improved diagnosis of clinically significant prostate cancer on biparametric MRI.
Quant Imaging Med Surg. 2020 Feb;10(2):368-379. doi: 10.21037/qims.2019.12.06.
4
The Applications of Radiomics in Precision Diagnosis and Treatment of Oncology: Opportunities and Challenges.
Theranostics. 2019 Feb 12;9(5):1303-1322. doi: 10.7150/thno.30309. eCollection 2019.
6
Can CT radiomic analysis in NSCLC predict histology and EGFR mutation status?
Medicine (Baltimore). 2019 Jan;98(1):e13963. doi: 10.1097/MD.0000000000013963.
7
Deep learning in radiology: An overview of the concepts and a survey of the state of the art with focus on MRI.
J Magn Reson Imaging. 2019 Apr;49(4):939-954. doi: 10.1002/jmri.26534. Epub 2018 Dec 21.
8
Deep learning for lung cancer prognostication: A retrospective multi-cohort radiomics study.
PLoS Med. 2018 Nov 30;15(11):e1002711. doi: 10.1371/journal.pmed.1002711. eCollection 2018 Nov.
9
Radiomic signature as a diagnostic factor for histologic subtype classification of non-small cell lung cancer.
Eur Radiol. 2018 Jul;28(7):2772-2778. doi: 10.1007/s00330-017-5221-1. Epub 2018 Feb 15.
10
Computational Radiomics System to Decode the Radiographic Phenotype.
Cancer Res. 2017 Nov 1;77(21):e104-e107. doi: 10.1158/0008-5472.CAN-17-0339.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验