Suppr超能文献

用于电容式储能的聚合物纳米电介质设计

Design of Polymer Nanodielectrics for Capacitive Energy Storage.

作者信息

Prabhune Prajakta, Comlek Yigitcan, Shandilya Abhishek, Sundararaman Ravishankar, Schadler Linda S, Brinson Lynda Catherine, Chen Wei

机构信息

Thomas Lord Department of Mechanical Engineering and Material Science, Duke University, Durham, NC 27708, USA.

Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA.

出版信息

Nanomaterials (Basel). 2023 Aug 22;13(17):2394. doi: 10.3390/nano13172394.

Abstract

Polymer nanodielectrics present a particularly challenging materials design problem for capacitive energy storage applications like polymer film capacitors. High permittivity and breakdown strength are needed to achieve high energy density and loss must be low. Strategies that increase permittivity tend to decrease the breakdown strength and increase loss. We hypothesize that a parameter space exists for fillers of modest aspect ratio functionalized with charge-trapping molecules that results in an increase in permittivity and breakdown strength simultaneously, while limiting increases in loss. In this work, we explore this parameter space, using physics-based, multiscale 3D dielectric property simulations, mixed-variable machine learning and Bayesian optimization to identify the compositions and morphologies which lead to the optimization of these competing properties. We employ first principle-based calculations for interface trap densities which are further used in breakdown strength calculations. For permittivity and loss calculations, we use continuum scale modelling and finite difference solution of Poisson's equation for steady-state currents. We propose a design framework for optimizing multiple properties by tuning design variables including the microstructure and interface properties. Finally, we employ mixed-variable global sensitivity analysis to understand the complex interplay between four continuous microstructural and two categorical interface choices to extract further physical knowledge on the design of nanodielectrics.

摘要

对于诸如聚合物薄膜电容器之类的电容式储能应用而言,聚合物纳米电介质提出了一个特别具有挑战性的材料设计问题。要实现高能量密度,需要高介电常数和击穿强度,并且损耗必须很低。提高介电常数的策略往往会降低击穿强度并增加损耗。我们假设,对于用电荷俘获分子功能化的适度长径比的填料,存在一个参数空间,该空间会同时导致介电常数和击穿强度增加,同时限制损耗的增加。在这项工作中,我们利用基于物理的多尺度3D介电性能模拟、混合变量机器学习和贝叶斯优化来探索这个参数空间,以识别导致这些相互竞争的性能得到优化的成分和形态。我们采用基于第一原理的计算来确定界面陷阱密度,并将其进一步用于击穿强度计算。对于介电常数和损耗计算,我们使用连续尺度建模和泊松方程的有限差分解来计算稳态电流。我们提出了一个设计框架,通过调整包括微观结构和界面性质在内的设计变量来优化多种性能。最后,我们采用混合变量全局敏感性分析来理解四个连续微观结构和两个分类界面选择之间的复杂相互作用,以提取关于纳米电介质设计的更多物理知识。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1082/10490420/b549d4311799/nanomaterials-13-02394-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验